Kristina E. Young, Osvaldo Sala, Anthony Darrouzet-Nardi, Colin Tucker, Rebecca Finger-Higgens, Megan Starbuck, Sasha C. Reed
{"title":"苔藓和蓝藻对降水量和降水频率的变化表现出不同的碳吸收响应","authors":"Kristina E. Young, Osvaldo Sala, Anthony Darrouzet-Nardi, Colin Tucker, Rebecca Finger-Higgens, Megan Starbuck, Sasha C. Reed","doi":"10.1111/ele.70125","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Dryland organisms exhibit varied responses to changes in precipitation, including event size, frequency, and soil moisture duration, influencing carbon uptake and reserve management strategies. This principle, central to the pulse-reserve paradigm, has not been thoroughly evaluated in biological soil crusts (biocrusts), essential primary producers on dryland surfaces. We conducted two experiments to investigate carbon uptake in biocrusts under different precipitation regimes. In the first, we applied a gradient of watering amounts to biocrusts dominated by moss or cyanobacteria, hypothesising distinct pulse-response strategies. The second experiment extended watering treatments over three months, varying pulse size and frequency. Our results revealed distinct carbon uptake patterns: moss crusts exhibited increased CO<sub>2</sub> uptake with larger, less frequent watering events, whereas cyanobacteria crusts maintained similar carbon uptake across all event sizes. These findings suggest divergent pulse-response strategies across biocrust types, with implications for modelling dryland carbon dynamics and informing land management under changing precipitation regimes.</p>\n </div>","PeriodicalId":161,"journal":{"name":"Ecology Letters","volume":"28 5","pages":""},"PeriodicalIF":7.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biocrust Mosses and Cyanobacteria Exhibit Distinct Carbon Uptake Responses to Variations in Precipitation Amount and Frequency\",\"authors\":\"Kristina E. Young, Osvaldo Sala, Anthony Darrouzet-Nardi, Colin Tucker, Rebecca Finger-Higgens, Megan Starbuck, Sasha C. Reed\",\"doi\":\"10.1111/ele.70125\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Dryland organisms exhibit varied responses to changes in precipitation, including event size, frequency, and soil moisture duration, influencing carbon uptake and reserve management strategies. This principle, central to the pulse-reserve paradigm, has not been thoroughly evaluated in biological soil crusts (biocrusts), essential primary producers on dryland surfaces. We conducted two experiments to investigate carbon uptake in biocrusts under different precipitation regimes. In the first, we applied a gradient of watering amounts to biocrusts dominated by moss or cyanobacteria, hypothesising distinct pulse-response strategies. The second experiment extended watering treatments over three months, varying pulse size and frequency. Our results revealed distinct carbon uptake patterns: moss crusts exhibited increased CO<sub>2</sub> uptake with larger, less frequent watering events, whereas cyanobacteria crusts maintained similar carbon uptake across all event sizes. These findings suggest divergent pulse-response strategies across biocrust types, with implications for modelling dryland carbon dynamics and informing land management under changing precipitation regimes.</p>\\n </div>\",\"PeriodicalId\":161,\"journal\":{\"name\":\"Ecology Letters\",\"volume\":\"28 5\",\"pages\":\"\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ecology Letters\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/ele.70125\",\"RegionNum\":1,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecology Letters","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/ele.70125","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ECOLOGY","Score":null,"Total":0}
Biocrust Mosses and Cyanobacteria Exhibit Distinct Carbon Uptake Responses to Variations in Precipitation Amount and Frequency
Dryland organisms exhibit varied responses to changes in precipitation, including event size, frequency, and soil moisture duration, influencing carbon uptake and reserve management strategies. This principle, central to the pulse-reserve paradigm, has not been thoroughly evaluated in biological soil crusts (biocrusts), essential primary producers on dryland surfaces. We conducted two experiments to investigate carbon uptake in biocrusts under different precipitation regimes. In the first, we applied a gradient of watering amounts to biocrusts dominated by moss or cyanobacteria, hypothesising distinct pulse-response strategies. The second experiment extended watering treatments over three months, varying pulse size and frequency. Our results revealed distinct carbon uptake patterns: moss crusts exhibited increased CO2 uptake with larger, less frequent watering events, whereas cyanobacteria crusts maintained similar carbon uptake across all event sizes. These findings suggest divergent pulse-response strategies across biocrust types, with implications for modelling dryland carbon dynamics and informing land management under changing precipitation regimes.
期刊介绍:
Ecology Letters serves as a platform for the rapid publication of innovative research in ecology. It considers manuscripts across all taxa, biomes, and geographic regions, prioritizing papers that investigate clearly stated hypotheses. The journal publishes concise papers of high originality and general interest, contributing to new developments in ecology. Purely descriptive papers and those that only confirm or extend previous results are discouraged.