具有slater型修正的中子星Chandrasekhar变分问题的渐近行为

IF 2.6 2区 数学 Q1 MATHEMATICS, APPLIED
Deke Li, Qingxuan Wang
{"title":"具有slater型修正的中子星Chandrasekhar变分问题的渐近行为","authors":"Deke Li,&nbsp;Qingxuan Wang","doi":"10.1111/sapm.70058","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In this paper, we consider the Chandrasekhar variational model for neutron stars with defocusing Slater-type modifications. First, we show the existence and nonexistence of the ground state <span></span><math>\n <semantics>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\rho _{\\varepsilon }$</annotation>\n </semantics></math> by concentration–compactness method, and particularly use two auxiliary functions to prove the strongly binding inequality. Second, we characterize perturbation limit behaviors of ground states <span></span><math>\n <semantics>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\rho _{\\varepsilon }$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <msup>\n <mn>0</mn>\n <mo>+</mo>\n </msup>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow 0^+$</annotation>\n </semantics></math> and obtain two different blow-up profiles corresponding to two limit equations for <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>=</mo>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation>$N= N_*$</annotation>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>&gt;</mo>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation>$N&gt; N_*$</annotation>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math> is a parameter corresponding to Slater-type modifications, and <span></span><math>\n <semantics>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n <annotation>$N_*$</annotation>\n </semantics></math> is a threshold value related to the <i>Chandrasekhar limit</i>. Finally, we study the limit behaviors for <span></span><math>\n <semantics>\n <mrow>\n <mi>N</mi>\n <mo>≥</mo>\n <msub>\n <mi>N</mi>\n <mo>∗</mo>\n </msub>\n </mrow>\n <annotation>$N\\ge N_*$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow +\\infty$</annotation>\n </semantics></math>, using some iterate arguments, we obtain a vanishing rate for <span></span><math>\n <semantics>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <annotation>$\\rho _{\\varepsilon }$</annotation>\n </semantics></math> that <span></span><math>\n <semantics>\n <mrow>\n <mrow>\n <mo>∥</mo>\n </mrow>\n <msub>\n <mi>ρ</mi>\n <mi>ε</mi>\n </msub>\n <msub>\n <mo>∥</mo>\n <msup>\n <mi>L</mi>\n <mi>∞</mi>\n </msup>\n </msub>\n <mo>≲</mo>\n <msup>\n <mi>ε</mi>\n <mrow>\n <mo>−</mo>\n <mfrac>\n <mn>1</mn>\n <mrow>\n <mi>α</mi>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </mfrac>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\Vert \\rho _\\varepsilon \\Vert _{L^\\infty }\\lesssim \\varepsilon ^{-\\frac{1}{\\alpha -1}}$</annotation>\n </semantics></math> as <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$\\varepsilon \\rightarrow +\\infty$</annotation>\n </semantics></math> for any <span></span><math>\n <semantics>\n <mrow>\n <mn>4</mn>\n <mo>/</mo>\n <mn>3</mn>\n <mo>&lt;</mo>\n <mi>α</mi>\n <mo>&lt;</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n <annotation>$4/3&lt;\\alpha &lt;+\\infty$</annotation>\n </semantics></math>. Moreover, we characterize the limit behaviors of the energy <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>ε</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_\\varepsilon (N)$</annotation>\n </semantics></math> with respect to <span></span><math>\n <semantics>\n <mi>ε</mi>\n <annotation>$\\varepsilon$</annotation>\n </semantics></math>, and show that <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>lim</mi>\n <mrow>\n <mi>ε</mi>\n <mo>→</mo>\n <mo>+</mo>\n <mi>∞</mi>\n </mrow>\n </msub>\n <msub>\n <mi>E</mi>\n <mi>ε</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n <mo>=</mo>\n <mi>m</mi>\n <mi>N</mi>\n </mrow>\n <annotation>$\\lim _{\\varepsilon \\rightarrow +\\infty }E_\\varepsilon (N)=mN$</annotation>\n </semantics></math>, <span></span><math>\n <semantics>\n <mrow>\n <msub>\n <mi>E</mi>\n <mi>ε</mi>\n </msub>\n <mrow>\n <mo>(</mo>\n <mi>N</mi>\n <mo>)</mo>\n </mrow>\n </mrow>\n <annotation>$E_\\varepsilon (N)$</annotation>\n </semantics></math> is concave and strictly monotonically increasing with respect to <span></span><math>\n <semantics>\n <mrow>\n <mi>ε</mi>\n <mo>&gt;</mo>\n <mn>0</mn>\n </mrow>\n <annotation>$\\varepsilon &gt;0$</annotation>\n </semantics></math> in some case.</p></div>","PeriodicalId":51174,"journal":{"name":"Studies in Applied Mathematics","volume":"154 5","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic Behaviors of Chandrasekhar Variational Problem for Neutron Stars With Slater-Type Modification\",\"authors\":\"Deke Li,&nbsp;Qingxuan Wang\",\"doi\":\"10.1111/sapm.70058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>In this paper, we consider the Chandrasekhar variational model for neutron stars with defocusing Slater-type modifications. First, we show the existence and nonexistence of the ground state <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ρ</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$\\\\rho _{\\\\varepsilon }$</annotation>\\n </semantics></math> by concentration–compactness method, and particularly use two auxiliary functions to prove the strongly binding inequality. Second, we characterize perturbation limit behaviors of ground states <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ρ</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$\\\\rho _{\\\\varepsilon }$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <msup>\\n <mn>0</mn>\\n <mo>+</mo>\\n </msup>\\n </mrow>\\n <annotation>$\\\\varepsilon \\\\rightarrow 0^+$</annotation>\\n </semantics></math> and obtain two different blow-up profiles corresponding to two limit equations for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>=</mo>\\n <msub>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msub>\\n </mrow>\\n <annotation>$N= N_*$</annotation>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>&gt;</mo>\\n <msub>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msub>\\n </mrow>\\n <annotation>$N&gt; N_*$</annotation>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon$</annotation>\\n </semantics></math> is a parameter corresponding to Slater-type modifications, and <span></span><math>\\n <semantics>\\n <msub>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msub>\\n <annotation>$N_*$</annotation>\\n </semantics></math> is a threshold value related to the <i>Chandrasekhar limit</i>. Finally, we study the limit behaviors for <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>N</mi>\\n <mo>≥</mo>\\n <msub>\\n <mi>N</mi>\\n <mo>∗</mo>\\n </msub>\\n </mrow>\\n <annotation>$N\\\\ge N_*$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\varepsilon \\\\rightarrow +\\\\infty$</annotation>\\n </semantics></math>, using some iterate arguments, we obtain a vanishing rate for <span></span><math>\\n <semantics>\\n <msub>\\n <mi>ρ</mi>\\n <mi>ε</mi>\\n </msub>\\n <annotation>$\\\\rho _{\\\\varepsilon }$</annotation>\\n </semantics></math> that <span></span><math>\\n <semantics>\\n <mrow>\\n <mrow>\\n <mo>∥</mo>\\n </mrow>\\n <msub>\\n <mi>ρ</mi>\\n <mi>ε</mi>\\n </msub>\\n <msub>\\n <mo>∥</mo>\\n <msup>\\n <mi>L</mi>\\n <mi>∞</mi>\\n </msup>\\n </msub>\\n <mo>≲</mo>\\n <msup>\\n <mi>ε</mi>\\n <mrow>\\n <mo>−</mo>\\n <mfrac>\\n <mn>1</mn>\\n <mrow>\\n <mi>α</mi>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </mfrac>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\Vert \\\\rho _\\\\varepsilon \\\\Vert _{L^\\\\infty }\\\\lesssim \\\\varepsilon ^{-\\\\frac{1}{\\\\alpha -1}}$</annotation>\\n </semantics></math> as <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$\\\\varepsilon \\\\rightarrow +\\\\infty$</annotation>\\n </semantics></math> for any <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>4</mn>\\n <mo>/</mo>\\n <mn>3</mn>\\n <mo>&lt;</mo>\\n <mi>α</mi>\\n <mo>&lt;</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n <annotation>$4/3&lt;\\\\alpha &lt;+\\\\infty$</annotation>\\n </semantics></math>. Moreover, we characterize the limit behaviors of the energy <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>ε</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$E_\\\\varepsilon (N)$</annotation>\\n </semantics></math> with respect to <span></span><math>\\n <semantics>\\n <mi>ε</mi>\\n <annotation>$\\\\varepsilon$</annotation>\\n </semantics></math>, and show that <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>lim</mi>\\n <mrow>\\n <mi>ε</mi>\\n <mo>→</mo>\\n <mo>+</mo>\\n <mi>∞</mi>\\n </mrow>\\n </msub>\\n <msub>\\n <mi>E</mi>\\n <mi>ε</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n <mo>=</mo>\\n <mi>m</mi>\\n <mi>N</mi>\\n </mrow>\\n <annotation>$\\\\lim _{\\\\varepsilon \\\\rightarrow +\\\\infty }E_\\\\varepsilon (N)=mN$</annotation>\\n </semantics></math>, <span></span><math>\\n <semantics>\\n <mrow>\\n <msub>\\n <mi>E</mi>\\n <mi>ε</mi>\\n </msub>\\n <mrow>\\n <mo>(</mo>\\n <mi>N</mi>\\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n <annotation>$E_\\\\varepsilon (N)$</annotation>\\n </semantics></math> is concave and strictly monotonically increasing with respect to <span></span><math>\\n <semantics>\\n <mrow>\\n <mi>ε</mi>\\n <mo>&gt;</mo>\\n <mn>0</mn>\\n </mrow>\\n <annotation>$\\\\varepsilon &gt;0$</annotation>\\n </semantics></math> in some case.</p></div>\",\"PeriodicalId\":51174,\"journal\":{\"name\":\"Studies in Applied Mathematics\",\"volume\":\"154 5\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Studies in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70058\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Studies in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/sapm.70058","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑带有散焦slater型修正的中子星钱德拉塞卡变分模型。首先,用浓度-紧性方法证明了基态ρ ε $\rho _{\varepsilon }$的存在性和不存在性,并用两个辅助函数证明了强约束不等式。第二,我们将基态ρ ε $\rho _{\varepsilon }$的摄动极限行为表征为ε→0 + $\varepsilon \rightarrow 0^+$,得到了对应于两个极限方程的两个不同的爆破曲线N = N * $N= N_*$和N &gt;N∗$N&gt; N_*$,其中ε $\varepsilon$是对应于sllater型修正的参数,而N∗$N_*$是与钱德拉塞卡极限有关的阈值。最后,我们利用一些迭代参数,研究了N≥N∗$N\ge N_*$为ε→+∞$\varepsilon \rightarrow +\infty$时的极限行为。我们得到了ρ ε $\rho _{\varepsilon }$的消失率∥ρ ε∥L∞>ε−1 α−1 $\Vert \rho _\varepsilon \Vert _{L^\infty }\lesssim \varepsilon ^{-\frac{1}{\alpha -1}}$为ε→+∞$\varepsilon \rightarrow +\infty$对于任意4 / 3 &lt;α &lt;+∞$4/3&lt;\alpha &lt;+\infty$。 此外,我们描述了能量E ε (N) $E_\varepsilon (N)$相对于ε $\varepsilon$的极限行为。并证明lim ε→+∞E ε (N) = m N$\lim _{\varepsilon \rightarrow +\infty }E_\varepsilon (N)=mN$, E ε (N) $E_\varepsilon (N)$凹且对ε &gt严格单调递增;0 $\varepsilon &gt;0$在某些情况下。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Asymptotic Behaviors of Chandrasekhar Variational Problem for Neutron Stars With Slater-Type Modification

In this paper, we consider the Chandrasekhar variational model for neutron stars with defocusing Slater-type modifications. First, we show the existence and nonexistence of the ground state ρ ε $\rho _{\varepsilon }$ by concentration–compactness method, and particularly use two auxiliary functions to prove the strongly binding inequality. Second, we characterize perturbation limit behaviors of ground states ρ ε $\rho _{\varepsilon }$ as ε 0 + $\varepsilon \rightarrow 0^+$ and obtain two different blow-up profiles corresponding to two limit equations for N = N $N= N_*$ and N > N $N> N_*$ , where ε $\varepsilon$ is a parameter corresponding to Slater-type modifications, and N $N_*$ is a threshold value related to the Chandrasekhar limit. Finally, we study the limit behaviors for N N $N\ge N_*$ as ε + $\varepsilon \rightarrow +\infty$ , using some iterate arguments, we obtain a vanishing rate for ρ ε $\rho _{\varepsilon }$ that ρ ε L ε 1 α 1 $\Vert \rho _\varepsilon \Vert _{L^\infty }\lesssim \varepsilon ^{-\frac{1}{\alpha -1}}$ as ε + $\varepsilon \rightarrow +\infty$ for any 4 / 3 < α < + $4/3<\alpha <+\infty$ . Moreover, we characterize the limit behaviors of the energy E ε ( N ) $E_\varepsilon (N)$ with respect to ε $\varepsilon$ , and show that lim ε + E ε ( N ) = m N $\lim _{\varepsilon \rightarrow +\infty }E_\varepsilon (N)=mN$ , E ε ( N ) $E_\varepsilon (N)$ is concave and strictly monotonically increasing with respect to ε > 0 $\varepsilon >0$ in some case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Studies in Applied Mathematics
Studies in Applied Mathematics 数学-应用数学
CiteScore
4.30
自引率
3.70%
发文量
66
审稿时长
>12 weeks
期刊介绍: Studies in Applied Mathematics explores the interplay between mathematics and the applied disciplines. It publishes papers that advance the understanding of physical processes, or develop new mathematical techniques applicable to physical and real-world problems. Its main themes include (but are not limited to) nonlinear phenomena, mathematical modeling, integrable systems, asymptotic analysis, inverse problems, numerical analysis, dynamical systems, scientific computing and applications to areas such as fluid mechanics, mathematical biology, and optics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信