Yu. V. Khramtsov, T. N. Lupanova, A. A. Rosenkranz, G. P. Georgiev, A. S. Sobolev
{"title":"编码SARS-CoV-2病毒n蛋白质粒转染A549细胞效率的优化","authors":"Yu. V. Khramtsov, T. N. Lupanova, A. A. Rosenkranz, G. P. Georgiev, A. S. Sobolev","doi":"10.1134/S1607672924601136","DOIUrl":null,"url":null,"abstract":"<p>To test new antiviral drugs aimed at degrading the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus, it is desirable to have cells expressing the N-protein, for which it is necessary to find conditions for the maximum achievable efficiency of cell transfection with a plasmid encoding this protein. For transfection, polyplexes were used consisting of a plasmid encoding the N-protein fused with the mRuby3 fluorescent protein and polyethyleneimine (PEI)-polyethylene glycol (PEG)-TAT peptide block copolymers. The dependence of the transfection efficiency of human lung adenocarcinoma A549 cells on the PEG/PEI and N/P ratios (the ratio of nitrogen in PEI to phosphate in DNA) was studied. Significant positive correlations were shown between transfection efficiency determined by flow cytometry, the N/P ratio, and the proportion of polyplexes sized 40–54 nm. The data obtained can serve as a basis for creating an animal model of lung cells transiently expressing the N protein of the SARS-CoV-2 virus.</p>","PeriodicalId":529,"journal":{"name":"Doklady Biochemistry and Biophysics","volume":"521 1","pages":"157 - 159"},"PeriodicalIF":0.8000,"publicationDate":"2025-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of A549 Cell Transfection Efficiency with a Plasmid Encoding the N-Protein of the SARS-CoV-2 Virus\",\"authors\":\"Yu. V. Khramtsov, T. N. Lupanova, A. A. Rosenkranz, G. P. Georgiev, A. S. Sobolev\",\"doi\":\"10.1134/S1607672924601136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>To test new antiviral drugs aimed at degrading the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus, it is desirable to have cells expressing the N-protein, for which it is necessary to find conditions for the maximum achievable efficiency of cell transfection with a plasmid encoding this protein. For transfection, polyplexes were used consisting of a plasmid encoding the N-protein fused with the mRuby3 fluorescent protein and polyethyleneimine (PEI)-polyethylene glycol (PEG)-TAT peptide block copolymers. The dependence of the transfection efficiency of human lung adenocarcinoma A549 cells on the PEG/PEI and N/P ratios (the ratio of nitrogen in PEI to phosphate in DNA) was studied. Significant positive correlations were shown between transfection efficiency determined by flow cytometry, the N/P ratio, and the proportion of polyplexes sized 40–54 nm. The data obtained can serve as a basis for creating an animal model of lung cells transiently expressing the N protein of the SARS-CoV-2 virus.</p>\",\"PeriodicalId\":529,\"journal\":{\"name\":\"Doklady Biochemistry and Biophysics\",\"volume\":\"521 1\",\"pages\":\"157 - 159\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Biochemistry and Biophysics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1607672924601136\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Biochemistry and Biophysics","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1134/S1607672924601136","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Optimization of A549 Cell Transfection Efficiency with a Plasmid Encoding the N-Protein of the SARS-CoV-2 Virus
To test new antiviral drugs aimed at degrading the nucleocapsid protein (N-protein) of the SARS-CoV-2 virus, it is desirable to have cells expressing the N-protein, for which it is necessary to find conditions for the maximum achievable efficiency of cell transfection with a plasmid encoding this protein. For transfection, polyplexes were used consisting of a plasmid encoding the N-protein fused with the mRuby3 fluorescent protein and polyethyleneimine (PEI)-polyethylene glycol (PEG)-TAT peptide block copolymers. The dependence of the transfection efficiency of human lung adenocarcinoma A549 cells on the PEG/PEI and N/P ratios (the ratio of nitrogen in PEI to phosphate in DNA) was studied. Significant positive correlations were shown between transfection efficiency determined by flow cytometry, the N/P ratio, and the proportion of polyplexes sized 40–54 nm. The data obtained can serve as a basis for creating an animal model of lung cells transiently expressing the N protein of the SARS-CoV-2 virus.
期刊介绍:
Doklady Biochemistry and Biophysics is a journal consisting of English translations of articles published in Russian in biochemistry and biophysics sections of the Russian-language journal Doklady Akademii Nauk. The journal''s goal is to publish the most significant new research in biochemistry and biophysics carried out in Russia today or in collaboration with Russian authors. The journal accepts only articles in the Russian language that are submitted or recommended by acting Russian or foreign members of the Russian Academy of Sciences. The journal does not accept direct submissions in English.