带电黑洞上的量子费米子超辐射和真空模糊性

IF 5.4 1区 物理与天体物理 Q1 Physics and Astronomy
Álvaro Álvarez-Domínguez, Elizabeth Winstanley
{"title":"带电黑洞上的量子费米子超辐射和真空模糊性","authors":"Álvaro Álvarez-Domínguez,&nbsp;Elizabeth Winstanley","doi":"10.1007/JHEP05(2025)118","DOIUrl":null,"url":null,"abstract":"<p>Unlike a classical charged bosonic field, a classical charged fermion field on a static charged black hole does not exhibit superradiant scattering. We demonstrate that the quantum analogue of this classical process is however present. We construct a vacuum state for the fermion field which has no incoming particles from past null infinity, but which contains, at future null infinity, a nonthermal flux of particles. This state describes both the discharge and energy loss of the black hole, and we analyze how the interpretation of this phenomenon depends on the ambiguities inherent in defining the quantum vacuum.</p>","PeriodicalId":635,"journal":{"name":"Journal of High Energy Physics","volume":"2025 5","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)118.pdf","citationCount":"0","resultStr":"{\"title\":\"Quantum fermion superradiance and vacuum ambiguities on charged black holes\",\"authors\":\"Álvaro Álvarez-Domínguez,&nbsp;Elizabeth Winstanley\",\"doi\":\"10.1007/JHEP05(2025)118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Unlike a classical charged bosonic field, a classical charged fermion field on a static charged black hole does not exhibit superradiant scattering. We demonstrate that the quantum analogue of this classical process is however present. We construct a vacuum state for the fermion field which has no incoming particles from past null infinity, but which contains, at future null infinity, a nonthermal flux of particles. This state describes both the discharge and energy loss of the black hole, and we analyze how the interpretation of this phenomenon depends on the ambiguities inherent in defining the quantum vacuum.</p>\",\"PeriodicalId\":635,\"journal\":{\"name\":\"Journal of High Energy Physics\",\"volume\":\"2025 5\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/JHEP05(2025)118.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of High Energy Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/JHEP05(2025)118\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of High Energy Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/JHEP05(2025)118","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

摘要

与经典带电玻色子场不同,静态带电黑洞上的经典带电费米子场不会表现出超辐射散射。然而,我们证明了这个经典过程的量子模拟是存在的。我们为费米子场构造了一个真空状态,它没有从过去零无穷来的粒子,但在未来零无穷,它包含了粒子的非热通量。这种状态描述了黑洞的放电和能量损失,我们分析了这种现象的解释如何依赖于定义量子真空时固有的模糊性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum fermion superradiance and vacuum ambiguities on charged black holes

Unlike a classical charged bosonic field, a classical charged fermion field on a static charged black hole does not exhibit superradiant scattering. We demonstrate that the quantum analogue of this classical process is however present. We construct a vacuum state for the fermion field which has no incoming particles from past null infinity, but which contains, at future null infinity, a nonthermal flux of particles. This state describes both the discharge and energy loss of the black hole, and we analyze how the interpretation of this phenomenon depends on the ambiguities inherent in defining the quantum vacuum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of High Energy Physics
Journal of High Energy Physics 物理-物理:粒子与场物理
CiteScore
10.30
自引率
46.30%
发文量
2107
审稿时长
1.5 months
期刊介绍: The aim of the Journal of High Energy Physics (JHEP) is to ensure fast and efficient online publication tools to the scientific community, while keeping that community in charge of every aspect of the peer-review and publication process in order to ensure the highest quality standards in the journal. Consequently, the Advisory and Editorial Boards, composed of distinguished, active scientists in the field, jointly establish with the Scientific Director the journal''s scientific policy and ensure the scientific quality of accepted articles. JHEP presently encompasses the following areas of theoretical and experimental physics: Collider Physics Underground and Large Array Physics Quantum Field Theory Gauge Field Theories Symmetries String and Brane Theory General Relativity and Gravitation Supersymmetry Mathematical Methods of Physics Mostly Solvable Models Astroparticles Statistical Field Theories Mostly Weak Interactions Mostly Strong Interactions Quantum Field Theory (phenomenology) Strings and Branes Phenomenological Aspects of Supersymmetry Mostly Strong Interactions (phenomenology).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信