多元醇合成中铂纳米颗粒成核动力学及Pt/C催化剂性能

IF 4.3 3区 工程技术 Q2 ENGINEERING, CHEMICAL
Vladimir Guterman, Kirill Paperzh, Ilya Kantsypa, Elena Vetrova, Anatoly Metelitsa, Ilya Pankov, Yulia Pankova
{"title":"多元醇合成中铂纳米颗粒成核动力学及Pt/C催化剂性能","authors":"Vladimir Guterman,&nbsp;Kirill Paperzh,&nbsp;Ilya Kantsypa,&nbsp;Elena Vetrova,&nbsp;Anatoly Metelitsa,&nbsp;Ilya Pankov,&nbsp;Yulia Pankova","doi":"10.1007/s11705-025-2559-9","DOIUrl":null,"url":null,"abstract":"<div><p>This article presents a novel, facile method for studying the kinetics of liquid-phase synthesis of precious metal nanoparticles. The method is particularly suitable for use in concentrated solutions and under conditions involving gas purging and medium stirring. It is based on the continuous measurement of changes in the solution’s color components and the potential of an indicator electrode during the synthesis process. The method was applied to investigate the effect of solution pH on the kinetics of polyol synthesis of Pt nanoparticles and Pt/C electrocatalysts. The obtained Pt/C electrocatalysts demonstrate high structural-morphological and electrochemical characteristics, surpassing commercial analogs. The simplicity and efficiency of the “kinetic control” technique makes it promising for use in various liquid-phase synthesis technologies.\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":571,"journal":{"name":"Frontiers of Chemical Science and Engineering","volume":"19 6","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinetics of platinum nanoparticles nucleation in polyol synthesis over a wide pH range and properties of Pt/C catalysts\",\"authors\":\"Vladimir Guterman,&nbsp;Kirill Paperzh,&nbsp;Ilya Kantsypa,&nbsp;Elena Vetrova,&nbsp;Anatoly Metelitsa,&nbsp;Ilya Pankov,&nbsp;Yulia Pankova\",\"doi\":\"10.1007/s11705-025-2559-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This article presents a novel, facile method for studying the kinetics of liquid-phase synthesis of precious metal nanoparticles. The method is particularly suitable for use in concentrated solutions and under conditions involving gas purging and medium stirring. It is based on the continuous measurement of changes in the solution’s color components and the potential of an indicator electrode during the synthesis process. The method was applied to investigate the effect of solution pH on the kinetics of polyol synthesis of Pt nanoparticles and Pt/C electrocatalysts. The obtained Pt/C electrocatalysts demonstrate high structural-morphological and electrochemical characteristics, surpassing commercial analogs. The simplicity and efficiency of the “kinetic control” technique makes it promising for use in various liquid-phase synthesis technologies.\\n</p><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":571,\"journal\":{\"name\":\"Frontiers of Chemical Science and Engineering\",\"volume\":\"19 6\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Chemical Science and Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11705-025-2559-9\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Chemical Science and Engineering","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11705-025-2559-9","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种新颖、简便的液相合成贵金属纳米颗粒动力学研究方法。该方法特别适用于在浓溶液中以及在涉及气体净化和介质搅拌的条件下使用。它是基于在合成过程中连续测量溶液颜色成分的变化和指示电极的电位。采用该方法研究了溶液pH对Pt纳米粒子和Pt/C电催化剂合成多元醇动力学的影响。所制得的Pt/C电催化剂具有较高的结构形态和电化学特性,优于商业类似物。“动力学控制”技术的简单和高效使其在各种液相合成技术中具有广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Kinetics of platinum nanoparticles nucleation in polyol synthesis over a wide pH range and properties of Pt/C catalysts

This article presents a novel, facile method for studying the kinetics of liquid-phase synthesis of precious metal nanoparticles. The method is particularly suitable for use in concentrated solutions and under conditions involving gas purging and medium stirring. It is based on the continuous measurement of changes in the solution’s color components and the potential of an indicator electrode during the synthesis process. The method was applied to investigate the effect of solution pH on the kinetics of polyol synthesis of Pt nanoparticles and Pt/C electrocatalysts. The obtained Pt/C electrocatalysts demonstrate high structural-morphological and electrochemical characteristics, surpassing commercial analogs. The simplicity and efficiency of the “kinetic control” technique makes it promising for use in various liquid-phase synthesis technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.60
自引率
6.70%
发文量
868
审稿时长
1 months
期刊介绍: Frontiers of Chemical Science and Engineering presents the latest developments in chemical science and engineering, emphasizing emerging and multidisciplinary fields and international trends in research and development. The journal promotes communication and exchange between scientists all over the world. The contents include original reviews, research papers and short communications. Coverage includes catalysis and reaction engineering, clean energy, functional material, nanotechnology and nanoscience, biomaterials and biotechnology, particle technology and multiphase processing, separation science and technology, sustainable technologies and green processing.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信