基于红移供体-受体半花青碱的活细胞线粒体pH探针

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Fouzia Kalim, Gandhi Sivaraman, Himanshu Vankhede, Arati Ramesh, Sufi O. Raja and Akash Gulyani
{"title":"基于红移供体-受体半花青碱的活细胞线粒体pH探针","authors":"Fouzia Kalim, Gandhi Sivaraman, Himanshu Vankhede, Arati Ramesh, Sufi O. Raja and Akash Gulyani","doi":"10.1039/D4TB01839G","DOIUrl":null,"url":null,"abstract":"<p >pH dynamically regulates diverse cellular functions and processes. At the inner mitochondrial membrane (IMM), nanoscale pH gradients generated by the electron transport chain (ETC) play a critical role in contributing to mitochondrial membrane potential that drives ATP synthesis and thermogenesis. However, tools to decouple pH gradients from the overall IMM potential in living cells are limited. This study integrates a fluorescent “benzo-indole” chromophore with a pH-sensitive “phenol” moiety into a single covalent skeleton to build a sensitive, red-shifted, cell-permeable pH probe (Mito-pH2). Mito-pH2 localizes inside mitochondria with high specificity presumably to the mitochondrial inner membrane by virtue of being an amphiphilic cation and can report dynamic changes in mitochondrial pH in living cells. Our design ensures that Mito-pH2 exhibits pH-sensitive dual-excitation and dual-emission peaks enabling ratiometric pH-sensing. Furthermore, Mito-pH2 reports an increase in pH in the pH range of 3–9 through a striking colour change from yellow to purple making it a sensitive all-purpose colorimetric pH probe. A combination of DFT calculations and spectroscopy shed light on likely sensing mechanisms including photophysics. Quantitative live-cell fluorescence imaging reveals that Mito-pH2 can detect dynamic changes in mitochondrial pH upon extracellular pH modulation with little or no measurable cytotoxicity during live imaging. Red-emitting Mito-pH2 opens new avenues of quantitative mapping of physiological mitochondrial membrane pH and significantly enhances the repertoire of environment-sensitive and low-toxicity mitochondrial probes that link mitochondrial state and micro-environment.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 19","pages":" 5550-5557"},"PeriodicalIF":6.1000,"publicationDate":"2025-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A red-shifted donor–acceptor hemicyanine-based probe for mitochondrial pH in live cells†\",\"authors\":\"Fouzia Kalim, Gandhi Sivaraman, Himanshu Vankhede, Arati Ramesh, Sufi O. Raja and Akash Gulyani\",\"doi\":\"10.1039/D4TB01839G\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >pH dynamically regulates diverse cellular functions and processes. At the inner mitochondrial membrane (IMM), nanoscale pH gradients generated by the electron transport chain (ETC) play a critical role in contributing to mitochondrial membrane potential that drives ATP synthesis and thermogenesis. However, tools to decouple pH gradients from the overall IMM potential in living cells are limited. This study integrates a fluorescent “benzo-indole” chromophore with a pH-sensitive “phenol” moiety into a single covalent skeleton to build a sensitive, red-shifted, cell-permeable pH probe (Mito-pH2). Mito-pH2 localizes inside mitochondria with high specificity presumably to the mitochondrial inner membrane by virtue of being an amphiphilic cation and can report dynamic changes in mitochondrial pH in living cells. Our design ensures that Mito-pH2 exhibits pH-sensitive dual-excitation and dual-emission peaks enabling ratiometric pH-sensing. Furthermore, Mito-pH2 reports an increase in pH in the pH range of 3–9 through a striking colour change from yellow to purple making it a sensitive all-purpose colorimetric pH probe. A combination of DFT calculations and spectroscopy shed light on likely sensing mechanisms including photophysics. Quantitative live-cell fluorescence imaging reveals that Mito-pH2 can detect dynamic changes in mitochondrial pH upon extracellular pH modulation with little or no measurable cytotoxicity during live imaging. Red-emitting Mito-pH2 opens new avenues of quantitative mapping of physiological mitochondrial membrane pH and significantly enhances the repertoire of environment-sensitive and low-toxicity mitochondrial probes that link mitochondrial state and micro-environment.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 19\",\"pages\":\" 5550-5557\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-04-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01839g\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01839g","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

pH值动态调节各种细胞功能和过程。在线粒体内膜(IMM),电子传递链(ETC)产生的纳米级pH梯度在线粒体膜电位中起着关键作用,线粒体膜电位驱动ATP合成和产热。然而,将pH梯度与活细胞中整体IMM电位解耦的工具是有限的。本研究将荧光“苯并吲哚”发色团与pH敏感的“苯酚”片段整合到一个单一的共价骨架中,以构建一个敏感的、红移的、细胞渗透性的pH探针(Mito-pH2)。Mito-pH2是两亲性阳离子,定位于线粒体内,具有高度特异性,可能是线粒体内膜,可以报告活细胞中线粒体pH的动态变化。我们的设计确保Mito-pH2具有ph敏感的双激发和双发射峰,从而实现比率ph传感。此外,Mito-pH2报告pH值在3-9的pH范围内通过从黄色到紫色的显着颜色变化而增加,使其成为灵敏的通用比色pH探针。DFT计算和光谱学的结合揭示了可能的传感机制,包括光物理学。定量活细胞荧光成像显示,Mito-pH2可以检测细胞外pH调节时线粒体pH的动态变化,在活成像期间几乎没有可测量的细胞毒性。红色发射的Mito-pH2开辟了定量绘制生理线粒体膜pH的新途径,并显著增强了连接线粒体状态和微环境的环境敏感和低毒性线粒体探针的功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A red-shifted donor–acceptor hemicyanine-based probe for mitochondrial pH in live cells†

pH dynamically regulates diverse cellular functions and processes. At the inner mitochondrial membrane (IMM), nanoscale pH gradients generated by the electron transport chain (ETC) play a critical role in contributing to mitochondrial membrane potential that drives ATP synthesis and thermogenesis. However, tools to decouple pH gradients from the overall IMM potential in living cells are limited. This study integrates a fluorescent “benzo-indole” chromophore with a pH-sensitive “phenol” moiety into a single covalent skeleton to build a sensitive, red-shifted, cell-permeable pH probe (Mito-pH2). Mito-pH2 localizes inside mitochondria with high specificity presumably to the mitochondrial inner membrane by virtue of being an amphiphilic cation and can report dynamic changes in mitochondrial pH in living cells. Our design ensures that Mito-pH2 exhibits pH-sensitive dual-excitation and dual-emission peaks enabling ratiometric pH-sensing. Furthermore, Mito-pH2 reports an increase in pH in the pH range of 3–9 through a striking colour change from yellow to purple making it a sensitive all-purpose colorimetric pH probe. A combination of DFT calculations and spectroscopy shed light on likely sensing mechanisms including photophysics. Quantitative live-cell fluorescence imaging reveals that Mito-pH2 can detect dynamic changes in mitochondrial pH upon extracellular pH modulation with little or no measurable cytotoxicity during live imaging. Red-emitting Mito-pH2 opens new avenues of quantitative mapping of physiological mitochondrial membrane pH and significantly enhances the repertoire of environment-sensitive and low-toxicity mitochondrial probes that link mitochondrial state and micro-environment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信