从感知角度看:基于双感知混合网络的无参考图像质量评估

IF 3.9 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Yang Lu , Zifan Yang , Zilu Zhou , Gaowei Zhang , Xiaoheng Jiang , Mingliang Xu
{"title":"从感知角度看:基于双感知混合网络的无参考图像质量评估","authors":"Yang Lu ,&nbsp;Zifan Yang ,&nbsp;Zilu Zhou ,&nbsp;Gaowei Zhang ,&nbsp;Xiaoheng Jiang ,&nbsp;Mingliang Xu","doi":"10.1016/j.patrec.2025.04.035","DOIUrl":null,"url":null,"abstract":"<div><div>The goal of the No-Reference Image Quality Assessment is to simulate human perception of image quality without the availability of a reference image. Previous research has largely focused on extracting content features from distorted images, perceiving distortion types pixel-by-pixel or in blocks while neglecting the establishment of a relationship between the quality of distorted and reference images. To address this issue, this paper proposes a Dual Perception Hybrid Network (DPHN), where dual perception refers to the parallel extraction of quality and content features. Quality perception involves constructing a quality relationship by leveraging the difference between the features of the distorted image and the reconstructed image, while content perception focuses on learning the content information of the distortion itself from the distorted image. To demonstrate the effectiveness of the proposed Dual Perception Fusion Network, we utilised four representative IQA datasets. Extensive experimental results show that the proposed network exhibits promising performance. Our code will be available at <span><span>https://github.com/YZFzzu/DPHN</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"194 ","pages":"Pages 55-61"},"PeriodicalIF":3.9000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"From a perceptual perspective: No-Reference Image Quality Assessment using Dual Perception Hybrid Network\",\"authors\":\"Yang Lu ,&nbsp;Zifan Yang ,&nbsp;Zilu Zhou ,&nbsp;Gaowei Zhang ,&nbsp;Xiaoheng Jiang ,&nbsp;Mingliang Xu\",\"doi\":\"10.1016/j.patrec.2025.04.035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The goal of the No-Reference Image Quality Assessment is to simulate human perception of image quality without the availability of a reference image. Previous research has largely focused on extracting content features from distorted images, perceiving distortion types pixel-by-pixel or in blocks while neglecting the establishment of a relationship between the quality of distorted and reference images. To address this issue, this paper proposes a Dual Perception Hybrid Network (DPHN), where dual perception refers to the parallel extraction of quality and content features. Quality perception involves constructing a quality relationship by leveraging the difference between the features of the distorted image and the reconstructed image, while content perception focuses on learning the content information of the distortion itself from the distorted image. To demonstrate the effectiveness of the proposed Dual Perception Fusion Network, we utilised four representative IQA datasets. Extensive experimental results show that the proposed network exhibits promising performance. Our code will be available at <span><span>https://github.com/YZFzzu/DPHN</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":54638,\"journal\":{\"name\":\"Pattern Recognition Letters\",\"volume\":\"194 \",\"pages\":\"Pages 55-61\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167865525001771\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525001771","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

无参考图像质量评估的目标是在没有参考图像的情况下模拟人类对图像质量的感知。以往的研究主要集中在从扭曲图像中提取内容特征,逐像素或块感知扭曲类型,而忽略了扭曲图像质量与参考图像质量之间关系的建立。为了解决这个问题,本文提出了一种双感知混合网络(Dual Perception Hybrid Network, DPHN),其中双感知指的是质量特征和内容特征的并行提取。质量感知是利用失真图像与重构图像的特征差异来构建质量关系,而内容感知则侧重于从失真图像中学习失真本身的内容信息。为了证明所提出的双感知融合网络的有效性,我们使用了四个具有代表性的IQA数据集。大量的实验结果表明,该网络具有良好的性能。我们的代码可以在https://github.com/YZFzzu/DPHN上找到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
From a perceptual perspective: No-Reference Image Quality Assessment using Dual Perception Hybrid Network
The goal of the No-Reference Image Quality Assessment is to simulate human perception of image quality without the availability of a reference image. Previous research has largely focused on extracting content features from distorted images, perceiving distortion types pixel-by-pixel or in blocks while neglecting the establishment of a relationship between the quality of distorted and reference images. To address this issue, this paper proposes a Dual Perception Hybrid Network (DPHN), where dual perception refers to the parallel extraction of quality and content features. Quality perception involves constructing a quality relationship by leveraging the difference between the features of the distorted image and the reconstructed image, while content perception focuses on learning the content information of the distortion itself from the distorted image. To demonstrate the effectiveness of the proposed Dual Perception Fusion Network, we utilised four representative IQA datasets. Extensive experimental results show that the proposed network exhibits promising performance. Our code will be available at https://github.com/YZFzzu/DPHN.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信