Jinghui Yu , Dinghui Wang , Tiantian Zhao , Xiaochen Yu , Sizhang Liu , Yanfang Wang , Kangyu Wang , Mingzhu Zhao , Ping Chen , Yi Wang , Meiping Zhang
{"title":"人参皂苷生物合成的潜在参与者和调控因子:内生真菌PBF-08的作用","authors":"Jinghui Yu , Dinghui Wang , Tiantian Zhao , Xiaochen Yu , Sizhang Liu , Yanfang Wang , Kangyu Wang , Mingzhu Zhao , Ping Chen , Yi Wang , Meiping Zhang","doi":"10.1016/j.plantsci.2025.112553","DOIUrl":null,"url":null,"abstract":"<div><div><em>Panax ginseng</em> C.A. Meyer was recognized as a precious traditional Chinese medicine with a long history of application<em>.</em> It is widely used due to its high medicinal value. Ginsenosides were identified as a group of triterpenoid secondary metabolites in ginseng and were considered the main active ingredients of ginseng. Plant endophytes were recognized as microorganisms that resided within plant tissues, coexisting with the host plant for part or all of their life cycle and interacting with the external environment together. Ginseng endophytes, as symbiotic microorganisms with ginseng, possess various functions such as enhancing yield, increasing resistance, and improving quality, making them an important microbial resource for potential utilization. In this study, we screened and identified an endophytic fungus PBF-08, which has the ability to produce ginsenosides Rg2, Rg3, and Re. By optimizing its fermentation conditions using the response surface methodology, the total ginsenoside yield was significantly increased. Additionally, ginseng adventitious roots were treated with strain PBF-08 as an elicitor, which significantly increased the ginsenoside content by regulating the expression of key enzyme genes in the ginsenoside biosynthesis pathway under optimal treatment concentration and time. Widely targeted metabolomic analysis revealed that strain PBF-08 not only possesses a complete and active terpenoid biosynthesis pathway but also synthesizes various metabolites that influence plant growth and metabolism. In summary, the strain PBF-08 was found to have potential application value in exploring new methods for obtaining ginsenosides and in developing microbial elicitors for regulating ginsenoside biosynthesis.</div></div>","PeriodicalId":20273,"journal":{"name":"Plant Science","volume":"358 ","pages":"Article 112553"},"PeriodicalIF":4.2000,"publicationDate":"2025-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential participants and regulatory factors in ginsenoside biosynthesis of Panax ginseng C.A. Meyer: The role of endophytic fungus PBF-08\",\"authors\":\"Jinghui Yu , Dinghui Wang , Tiantian Zhao , Xiaochen Yu , Sizhang Liu , Yanfang Wang , Kangyu Wang , Mingzhu Zhao , Ping Chen , Yi Wang , Meiping Zhang\",\"doi\":\"10.1016/j.plantsci.2025.112553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div><em>Panax ginseng</em> C.A. Meyer was recognized as a precious traditional Chinese medicine with a long history of application<em>.</em> It is widely used due to its high medicinal value. Ginsenosides were identified as a group of triterpenoid secondary metabolites in ginseng and were considered the main active ingredients of ginseng. Plant endophytes were recognized as microorganisms that resided within plant tissues, coexisting with the host plant for part or all of their life cycle and interacting with the external environment together. Ginseng endophytes, as symbiotic microorganisms with ginseng, possess various functions such as enhancing yield, increasing resistance, and improving quality, making them an important microbial resource for potential utilization. In this study, we screened and identified an endophytic fungus PBF-08, which has the ability to produce ginsenosides Rg2, Rg3, and Re. By optimizing its fermentation conditions using the response surface methodology, the total ginsenoside yield was significantly increased. Additionally, ginseng adventitious roots were treated with strain PBF-08 as an elicitor, which significantly increased the ginsenoside content by regulating the expression of key enzyme genes in the ginsenoside biosynthesis pathway under optimal treatment concentration and time. Widely targeted metabolomic analysis revealed that strain PBF-08 not only possesses a complete and active terpenoid biosynthesis pathway but also synthesizes various metabolites that influence plant growth and metabolism. In summary, the strain PBF-08 was found to have potential application value in exploring new methods for obtaining ginsenosides and in developing microbial elicitors for regulating ginsenoside biosynthesis.</div></div>\",\"PeriodicalId\":20273,\"journal\":{\"name\":\"Plant Science\",\"volume\":\"358 \",\"pages\":\"Article 112553\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Science\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0168945225001712\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Science","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168945225001712","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Potential participants and regulatory factors in ginsenoside biosynthesis of Panax ginseng C.A. Meyer: The role of endophytic fungus PBF-08
Panax ginseng C.A. Meyer was recognized as a precious traditional Chinese medicine with a long history of application. It is widely used due to its high medicinal value. Ginsenosides were identified as a group of triterpenoid secondary metabolites in ginseng and were considered the main active ingredients of ginseng. Plant endophytes were recognized as microorganisms that resided within plant tissues, coexisting with the host plant for part or all of their life cycle and interacting with the external environment together. Ginseng endophytes, as symbiotic microorganisms with ginseng, possess various functions such as enhancing yield, increasing resistance, and improving quality, making them an important microbial resource for potential utilization. In this study, we screened and identified an endophytic fungus PBF-08, which has the ability to produce ginsenosides Rg2, Rg3, and Re. By optimizing its fermentation conditions using the response surface methodology, the total ginsenoside yield was significantly increased. Additionally, ginseng adventitious roots were treated with strain PBF-08 as an elicitor, which significantly increased the ginsenoside content by regulating the expression of key enzyme genes in the ginsenoside biosynthesis pathway under optimal treatment concentration and time. Widely targeted metabolomic analysis revealed that strain PBF-08 not only possesses a complete and active terpenoid biosynthesis pathway but also synthesizes various metabolites that influence plant growth and metabolism. In summary, the strain PBF-08 was found to have potential application value in exploring new methods for obtaining ginsenosides and in developing microbial elicitors for regulating ginsenoside biosynthesis.
期刊介绍:
Plant Science will publish in the minimum of time, research manuscripts as well as commissioned reviews and commentaries recommended by its referees in all areas of experimental plant biology with emphasis in the broad areas of genomics, proteomics, biochemistry (including enzymology), physiology, cell biology, development, genetics, functional plant breeding, systems biology and the interaction of plants with the environment.
Manuscripts for full consideration should be written concisely and essentially as a final report. The main criterion for publication is that the manuscript must contain original and significant insights that lead to a better understanding of fundamental plant biology. Papers centering on plant cell culture should be of interest to a wide audience and methods employed result in a substantial improvement over existing established techniques and approaches. Methods papers are welcome only when the technique(s) described is novel or provides a major advancement of established protocols.