具有k个周期的3 × 3最优排序集抽样设计和正态分布参数的最佳线性不变估计

IF 0.9 4区 数学 Q3 STATISTICS & PROBABILITY
Minmin Li, Wangxue Chen
{"title":"具有k个周期的3 × 3最优排序集抽样设计和正态分布参数的最佳线性不变估计","authors":"Minmin Li,&nbsp;Wangxue Chen","doi":"10.1016/j.spl.2025.110455","DOIUrl":null,"url":null,"abstract":"<div><div>In statistical parameter estimation problems, how well the parameters are estimated largely depends on the sampling design used. Cost effective sampling will be an important research problem. In this article, we find a 3 × 3 optimal ranked set sampling (RSS) design with <span><math><mi>k</mi></math></span> cycles for the normal distribution <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in which the location parameter <span><math><mi>μ</mi></math></span> and the scale parameter <span><math><mi>σ</mi></math></span> are both unknown based on the D–optimal criterion in the experimental design. Then, the best linear invariant estimates (BLIEs) of <span><math><mi>μ</mi></math></span> and <span><math><mi>σ</mi></math></span> from <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and their properties are studied under this RSS design. The efficiency is compared by the determinant of the mean square error matrix. The theoretical results and numerical results show that the BLIEs under the optimal RSS are more effective than the BLIEs under the balanced RSS.</div></div>","PeriodicalId":49475,"journal":{"name":"Statistics & Probability Letters","volume":"224 ","pages":"Article 110455"},"PeriodicalIF":0.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3 × 3 optimal ranked set sampling design with k cycles and best linear invariant estimators of the parameters for normal distribution\",\"authors\":\"Minmin Li,&nbsp;Wangxue Chen\",\"doi\":\"10.1016/j.spl.2025.110455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In statistical parameter estimation problems, how well the parameters are estimated largely depends on the sampling design used. Cost effective sampling will be an important research problem. In this article, we find a 3 × 3 optimal ranked set sampling (RSS) design with <span><math><mi>k</mi></math></span> cycles for the normal distribution <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> in which the location parameter <span><math><mi>μ</mi></math></span> and the scale parameter <span><math><mi>σ</mi></math></span> are both unknown based on the D–optimal criterion in the experimental design. Then, the best linear invariant estimates (BLIEs) of <span><math><mi>μ</mi></math></span> and <span><math><mi>σ</mi></math></span> from <span><math><mrow><mi>N</mi><mrow><mo>(</mo><mi>μ</mi><mo>,</mo><msup><mrow><mi>σ</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span> and their properties are studied under this RSS design. The efficiency is compared by the determinant of the mean square error matrix. The theoretical results and numerical results show that the BLIEs under the optimal RSS are more effective than the BLIEs under the balanced RSS.</div></div>\",\"PeriodicalId\":49475,\"journal\":{\"name\":\"Statistics & Probability Letters\",\"volume\":\"224 \",\"pages\":\"Article 110455\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics & Probability Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167715225001002\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics & Probability Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167715225001002","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

在统计参数估计问题中,参数估计的好坏在很大程度上取决于所使用的抽样设计。成本效益采样将是一个重要的研究问题。本文基于实验设计中的d -最优准则,针对N(μ,σ2)正态分布,在位置参数μ和尺度参数σ均未知的情况下,提出了一种k次的3 × 3最优排序集抽样(RSS)设计。然后,在此RSS设计下,研究了N(μ,σ2)中μ和σ的最佳线性不变估计及其性质。用均方误差矩阵的行列式来比较效率。理论和数值结果表明,最优相对导向比平衡相对导向更有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
3 × 3 optimal ranked set sampling design with k cycles and best linear invariant estimators of the parameters for normal distribution
In statistical parameter estimation problems, how well the parameters are estimated largely depends on the sampling design used. Cost effective sampling will be an important research problem. In this article, we find a 3 × 3 optimal ranked set sampling (RSS) design with k cycles for the normal distribution N(μ,σ2) in which the location parameter μ and the scale parameter σ are both unknown based on the D–optimal criterion in the experimental design. Then, the best linear invariant estimates (BLIEs) of μ and σ from N(μ,σ2) and their properties are studied under this RSS design. The efficiency is compared by the determinant of the mean square error matrix. The theoretical results and numerical results show that the BLIEs under the optimal RSS are more effective than the BLIEs under the balanced RSS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistics & Probability Letters
Statistics & Probability Letters 数学-统计学与概率论
CiteScore
1.60
自引率
0.00%
发文量
173
审稿时长
6 months
期刊介绍: Statistics & Probability Letters adopts a novel and highly innovative approach to the publication of research findings in statistics and probability. It features concise articles, rapid publication and broad coverage of the statistics and probability literature. Statistics & Probability Letters is a refereed journal. Articles will be limited to six journal pages (13 double-space typed pages) including references and figures. Apart from the six-page limitation, originality, quality and clarity will be the criteria for choosing the material to be published in Statistics & Probability Letters. Every attempt will be made to provide the first review of a submitted manuscript within three months of submission. The proliferation of literature and long publication delays have made it difficult for researchers and practitioners to keep up with new developments outside of, or even within, their specialization. The aim of Statistics & Probability Letters is to help to alleviate this problem. Concise communications (letters) allow readers to quickly and easily digest large amounts of material and to stay up-to-date with developments in all areas of statistics and probability. The mainstream of Letters will focus on new statistical methods, theoretical results, and innovative applications of statistics and probability to other scientific disciplines. Key results and central ideas must be presented in a clear and concise manner. These results may be part of a larger study that the author will submit at a later time as a full length paper to SPL or to another journal. Theory and methodology may be published with proofs omitted, or only sketched, but only if sufficient support material is provided so that the findings can be verified. Empirical and computational results that are of significant value will be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信