分数阶Klein-Gordon和Burgers方程的混合解析方法

Q1 Mathematics
Huda Omran Altaie , Adel Rashed A. Ali , Ghaith Fadhil Abbas , Ali Hasan Ali
{"title":"分数阶Klein-Gordon和Burgers方程的混合解析方法","authors":"Huda Omran Altaie ,&nbsp;Adel Rashed A. Ali ,&nbsp;Ghaith Fadhil Abbas ,&nbsp;Ali Hasan Ali","doi":"10.1016/j.padiff.2025.101220","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, fractional-order partial differential equations (FPDEs), specifically the Klein–Gordon equation (KGE) and the Burgers equation, are analytically solved using a modified and combined version of the Elzaki Decomposition Technique (ETADM). To assess the efficacy and robustness of the proposed approach, several examples are provided to obtain analytical and numerical results related to the KGE and the Burgers equation. Furthermore, the proposed techniques yield convergent series solutions with well-defined components, without the need for perturbation or linearization. Additionally, we compare several methods for solving differential equations arising in physics and engineering, including ETADM, the Variational Iteration Method (VIM), and the Adomian Decomposition Method (ADM). For comparison and validation, three examples are presented, along with the results obtained using both ETADM and VIM.</div></div>","PeriodicalId":34531,"journal":{"name":"Partial Differential Equations in Applied Mathematics","volume":"14 ","pages":"Article 101220"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A hybrid analytical method for fractional order Klein–Gordon and Burgers equations\",\"authors\":\"Huda Omran Altaie ,&nbsp;Adel Rashed A. Ali ,&nbsp;Ghaith Fadhil Abbas ,&nbsp;Ali Hasan Ali\",\"doi\":\"10.1016/j.padiff.2025.101220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, fractional-order partial differential equations (FPDEs), specifically the Klein–Gordon equation (KGE) and the Burgers equation, are analytically solved using a modified and combined version of the Elzaki Decomposition Technique (ETADM). To assess the efficacy and robustness of the proposed approach, several examples are provided to obtain analytical and numerical results related to the KGE and the Burgers equation. Furthermore, the proposed techniques yield convergent series solutions with well-defined components, without the need for perturbation or linearization. Additionally, we compare several methods for solving differential equations arising in physics and engineering, including ETADM, the Variational Iteration Method (VIM), and the Adomian Decomposition Method (ADM). For comparison and validation, three examples are presented, along with the results obtained using both ETADM and VIM.</div></div>\",\"PeriodicalId\":34531,\"journal\":{\"name\":\"Partial Differential Equations in Applied Mathematics\",\"volume\":\"14 \",\"pages\":\"Article 101220\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Partial Differential Equations in Applied Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2666818125001470\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Partial Differential Equations in Applied Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666818125001470","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,分数阶偏微分方程(FPDEs),特别是Klein-Gordon方程(KGE)和Burgers方程,使用Elzaki分解技术(ETADM)的改进和组合版本进行解析求解。为了评估所提出的方法的有效性和鲁棒性,提供了几个例子来获得与KGE和Burgers方程相关的分析和数值结果。此外,所提出的技术产生收敛的级数解具有良好定义的分量,不需要扰动或线性化。此外,我们比较了几种求解物理和工程中出现的微分方程的方法,包括ETADM、变分迭代法(VIM)和Adomian分解法(ADM)。为了进行比较和验证,给出了三个示例,以及使用ETADM和VIM获得的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A hybrid analytical method for fractional order Klein–Gordon and Burgers equations
In this study, fractional-order partial differential equations (FPDEs), specifically the Klein–Gordon equation (KGE) and the Burgers equation, are analytically solved using a modified and combined version of the Elzaki Decomposition Technique (ETADM). To assess the efficacy and robustness of the proposed approach, several examples are provided to obtain analytical and numerical results related to the KGE and the Burgers equation. Furthermore, the proposed techniques yield convergent series solutions with well-defined components, without the need for perturbation or linearization. Additionally, we compare several methods for solving differential equations arising in physics and engineering, including ETADM, the Variational Iteration Method (VIM), and the Adomian Decomposition Method (ADM). For comparison and validation, three examples are presented, along with the results obtained using both ETADM and VIM.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
6.20
自引率
0.00%
发文量
138
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信