具有复杂和广义复杂结构的可积模型

IF 1.2 3区 数学 Q1 MATHEMATICS
A. Rezaei-Aghdam, A. Taghavi
{"title":"具有复杂和广义复杂结构的可积模型","authors":"A. Rezaei-Aghdam,&nbsp;A. Taghavi","doi":"10.1016/j.geomphys.2025.105527","DOIUrl":null,"url":null,"abstract":"<div><div>Using the general method presented by Mohammedi <span><span>[15]</span></span> for the integrability of a sigma model on a manifold, we investigate the conditions for having an integrable deformation of the general sigma model on a manifold with a complex structure. On a Lie group, these conditions are satisfied by using the zeros of the Nijenhuis tensor. We then extend this formalism to a manifold, especially a Lie group, with a generalized complex structure and in this manner we present new integrable sigma models. Then we demonstrate that, for the examples of integrable sigma models with generalized complex structures on the Lie groups <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>8</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>10</mn></mrow></msub></math></span>, under special conditions, the perturbed terms of the actions are identical to the WZ terms.</div></div>","PeriodicalId":55602,"journal":{"name":"Journal of Geometry and Physics","volume":"214 ","pages":"Article 105527"},"PeriodicalIF":1.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable sigma models with complex and generalized complex structures\",\"authors\":\"A. Rezaei-Aghdam,&nbsp;A. Taghavi\",\"doi\":\"10.1016/j.geomphys.2025.105527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using the general method presented by Mohammedi <span><span>[15]</span></span> for the integrability of a sigma model on a manifold, we investigate the conditions for having an integrable deformation of the general sigma model on a manifold with a complex structure. On a Lie group, these conditions are satisfied by using the zeros of the Nijenhuis tensor. We then extend this formalism to a manifold, especially a Lie group, with a generalized complex structure and in this manner we present new integrable sigma models. Then we demonstrate that, for the examples of integrable sigma models with generalized complex structures on the Lie groups <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>8</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>A</mi></mrow><mrow><mn>4</mn><mo>,</mo><mn>10</mn></mrow></msub></math></span>, under special conditions, the perturbed terms of the actions are identical to the WZ terms.</div></div>\",\"PeriodicalId\":55602,\"journal\":{\"name\":\"Journal of Geometry and Physics\",\"volume\":\"214 \",\"pages\":\"Article 105527\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geometry and Physics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0393044025001111\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geometry and Physics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0393044025001111","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用Mohammedi[15]给出的关于流形上σ模型可积性的一般方法,研究了具有复杂结构的流形上一般σ模型具有可积变形的条件。在李群上,利用Nijenhuis张量的零点可以满足这些条件。然后,我们将这一形式推广到具有广义复结构的流形,特别是李群,并以此方式给出了新的可积模型。然后,我们证明了在特殊条件下,对于李群A4,8和A4,10上具有广义复结构的可积σ模型,作用的摄动项与WZ项是相同的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable sigma models with complex and generalized complex structures
Using the general method presented by Mohammedi [15] for the integrability of a sigma model on a manifold, we investigate the conditions for having an integrable deformation of the general sigma model on a manifold with a complex structure. On a Lie group, these conditions are satisfied by using the zeros of the Nijenhuis tensor. We then extend this formalism to a manifold, especially a Lie group, with a generalized complex structure and in this manner we present new integrable sigma models. Then we demonstrate that, for the examples of integrable sigma models with generalized complex structures on the Lie groups A4,8 and A4,10, under special conditions, the perturbed terms of the actions are identical to the WZ terms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geometry and Physics
Journal of Geometry and Physics 物理-物理:数学物理
CiteScore
2.90
自引率
6.70%
发文量
205
审稿时长
64 days
期刊介绍: The Journal of Geometry and Physics is an International Journal in Mathematical Physics. The Journal stimulates the interaction between geometry and physics by publishing primary research, feature and review articles which are of common interest to practitioners in both fields. The Journal of Geometry and Physics now also accepts Letters, allowing for rapid dissemination of outstanding results in the field of geometry and physics. Letters should not exceed a maximum of five printed journal pages (or contain a maximum of 5000 words) and should contain novel, cutting edge results that are of broad interest to the mathematical physics community. Only Letters which are expected to make a significant addition to the literature in the field will be considered. The Journal covers the following areas of research: Methods of: • Algebraic and Differential Topology • Algebraic Geometry • Real and Complex Differential Geometry • Riemannian Manifolds • Symplectic Geometry • Global Analysis, Analysis on Manifolds • Geometric Theory of Differential Equations • Geometric Control Theory • Lie Groups and Lie Algebras • Supermanifolds and Supergroups • Discrete Geometry • Spinors and Twistors Applications to: • Strings and Superstrings • Noncommutative Topology and Geometry • Quantum Groups • Geometric Methods in Statistics and Probability • Geometry Approaches to Thermodynamics • Classical and Quantum Dynamical Systems • Classical and Quantum Integrable Systems • Classical and Quantum Mechanics • Classical and Quantum Field Theory • General Relativity • Quantum Information • Quantum Gravity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信