基于协同热管理结构的大容量锂离子电池浸没冷却系统多目标优化

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Zehua Zhu, Zhendong Zhang, Zhiwei Kuang, Wenjin Qin, Congbo Yin
{"title":"基于协同热管理结构的大容量锂离子电池浸没冷却系统多目标优化","authors":"Zehua Zhu,&nbsp;Zhendong Zhang,&nbsp;Zhiwei Kuang,&nbsp;Wenjin Qin,&nbsp;Congbo Yin","doi":"10.1016/j.energy.2025.136561","DOIUrl":null,"url":null,"abstract":"<div><div>The efficient thermal management of large-capacity energy storage batteries is a critical technical challenge to ensure their safe operation and support the implementation of national energy strategies. This study proposes a novel immersion liquid cooling system that integrates structural components such as support bars, spacer strips, and flow stabilizing block to form collaborative heat dissipation channels at the bottom, sides, and top of the battery module. High-performance hydrocarbon oil is used as the cooling medium to enhance heat exchange efficiency. Compared to cold plate liquid cooling, the proposed immersion cooling system offers superior performance, reducing the maximum temperature, temperature difference, and pressure drop by 51.91 %, 51.72 %, and 3.64 % over the parallel channel, and by 50.61 %, 51.52 %, and 94.23 % over the S-sharped channel. Key design variables are identified through sensitivity analysis, and a multi-objective optimization methodology is employed to refine the immersion cooling structure. The optimized solutions achieve reductions in maximum temperature (2.3 %–6.21 %) and temperature difference (5.37 %–10.32 %) while simultaneously decreasing the immersion liquid consumption by 7.8 %–31.5 %. Experimental validation shows that the maximum deviation between simulation results and test data is less than 1.76 °C, confirming the accuracy and reliability of the proposed design method.</div></div>","PeriodicalId":11647,"journal":{"name":"Energy","volume":"328 ","pages":"Article 136561"},"PeriodicalIF":9.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multi-objective optimization of immersion cooling system for large-capacity lithium-ion battery with collaborative thermal management structures\",\"authors\":\"Zehua Zhu,&nbsp;Zhendong Zhang,&nbsp;Zhiwei Kuang,&nbsp;Wenjin Qin,&nbsp;Congbo Yin\",\"doi\":\"10.1016/j.energy.2025.136561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The efficient thermal management of large-capacity energy storage batteries is a critical technical challenge to ensure their safe operation and support the implementation of national energy strategies. This study proposes a novel immersion liquid cooling system that integrates structural components such as support bars, spacer strips, and flow stabilizing block to form collaborative heat dissipation channels at the bottom, sides, and top of the battery module. High-performance hydrocarbon oil is used as the cooling medium to enhance heat exchange efficiency. Compared to cold plate liquid cooling, the proposed immersion cooling system offers superior performance, reducing the maximum temperature, temperature difference, and pressure drop by 51.91 %, 51.72 %, and 3.64 % over the parallel channel, and by 50.61 %, 51.52 %, and 94.23 % over the S-sharped channel. Key design variables are identified through sensitivity analysis, and a multi-objective optimization methodology is employed to refine the immersion cooling structure. The optimized solutions achieve reductions in maximum temperature (2.3 %–6.21 %) and temperature difference (5.37 %–10.32 %) while simultaneously decreasing the immersion liquid consumption by 7.8 %–31.5 %. Experimental validation shows that the maximum deviation between simulation results and test data is less than 1.76 °C, confirming the accuracy and reliability of the proposed design method.</div></div>\",\"PeriodicalId\":11647,\"journal\":{\"name\":\"Energy\",\"volume\":\"328 \",\"pages\":\"Article 136561\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0360544225022030\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0360544225022030","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

大容量储能电池的高效热管理是保障其安全运行和支持国家能源战略实施的关键技术挑战。本研究提出了一种新型的浸没式液冷系统,该系统集成了支撑杆、间隔条和稳定流块等结构部件,在电池模块的底部、侧面和顶部形成协同散热通道。采用高性能烃类油作为冷却介质,提高热交换效率。与冷板液冷相比,浸没式冷却系统的最大温度、温差和压降分别比平行通道降低51.91%、51.72%和3.64%,比s形通道降低50.61%、51.52%和94.23%。通过灵敏度分析确定关键设计变量,采用多目标优化方法对浸没式冷却结构进行优化。优化后的溶液可降低最高温度(2.3% - 6.21%)和温差(5.37% - 10.32%),同时降低浸液消耗7.8% - 31.5%。实验验证表明,仿真结果与试验数据的最大偏差小于1.76℃,验证了所提设计方法的准确性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-objective optimization of immersion cooling system for large-capacity lithium-ion battery with collaborative thermal management structures
The efficient thermal management of large-capacity energy storage batteries is a critical technical challenge to ensure their safe operation and support the implementation of national energy strategies. This study proposes a novel immersion liquid cooling system that integrates structural components such as support bars, spacer strips, and flow stabilizing block to form collaborative heat dissipation channels at the bottom, sides, and top of the battery module. High-performance hydrocarbon oil is used as the cooling medium to enhance heat exchange efficiency. Compared to cold plate liquid cooling, the proposed immersion cooling system offers superior performance, reducing the maximum temperature, temperature difference, and pressure drop by 51.91 %, 51.72 %, and 3.64 % over the parallel channel, and by 50.61 %, 51.52 %, and 94.23 % over the S-sharped channel. Key design variables are identified through sensitivity analysis, and a multi-objective optimization methodology is employed to refine the immersion cooling structure. The optimized solutions achieve reductions in maximum temperature (2.3 %–6.21 %) and temperature difference (5.37 %–10.32 %) while simultaneously decreasing the immersion liquid consumption by 7.8 %–31.5 %. Experimental validation shows that the maximum deviation between simulation results and test data is less than 1.76 °C, confirming the accuracy and reliability of the proposed design method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy
Energy 工程技术-能源与燃料
CiteScore
15.30
自引率
14.40%
发文量
0
审稿时长
14.2 weeks
期刊介绍: Energy is a multidisciplinary, international journal that publishes research and analysis in the field of energy engineering. Our aim is to become a leading peer-reviewed platform and a trusted source of information for energy-related topics. The journal covers a range of areas including mechanical engineering, thermal sciences, and energy analysis. We are particularly interested in research on energy modelling, prediction, integrated energy systems, planning, and management. Additionally, we welcome papers on energy conservation, efficiency, biomass and bioenergy, renewable energy, electricity supply and demand, energy storage, buildings, and economic and policy issues. These topics should align with our broader multidisciplinary focus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信