用代数2进整数标识的二进制序列的第n个2进复杂度

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Zhixiong Chen , Arne Winterhof
{"title":"用代数2进整数标识的二进制序列的第n个2进复杂度","authors":"Zhixiong Chen ,&nbsp;Arne Winterhof","doi":"10.1016/j.dam.2025.05.024","DOIUrl":null,"url":null,"abstract":"<div><div>We identify a binary sequence <span><math><mrow><mi>S</mi><mo>=</mo><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> with the 2-adic integer <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></munderover><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. In the case that <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> is algebraic over <span><math><mi>Q</mi></math></span> of degree <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, we prove that the <span><math><mi>N</mi></math></span>th 2-adic complexity of <span><math><mi>S</mi></math></span> is at least <span><math><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where the implied constant depends only on the minimal polynomial of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. This result is an analog of the bound of Mérai and the second author on the linear complexity of automatic sequences, that is, sequences with algebraic <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> over the rational function field <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>We further discuss the most important case <span><math><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span> in both settings and explain that the intersection of the set of 2-adic algebraic sequences and the set of automatic sequences is the set of (eventually) periodic sequences. Finally, we provide some experimental results supporting the conjecture that 2-adic algebraic sequences can have also a desirable <span><math><mi>N</mi></math></span>th linear complexity and automatic sequences a desirable <span><math><mi>N</mi></math></span>th 2-adic complexity, respectively.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"373 ","pages":"Pages 279-289"},"PeriodicalIF":1.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Nth 2-adic complexity of binary sequences identified with algebraic 2-adic integers\",\"authors\":\"Zhixiong Chen ,&nbsp;Arne Winterhof\",\"doi\":\"10.1016/j.dam.2025.05.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We identify a binary sequence <span><math><mrow><mi>S</mi><mo>=</mo><msubsup><mrow><mrow><mo>(</mo><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></msubsup></mrow></math></span> with the 2-adic integer <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow><mo>=</mo><munderover><mrow><mo>∑</mo></mrow><mrow><mi>n</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>∞</mi></mrow></munderover><msub><mrow><mi>s</mi></mrow><mrow><mi>n</mi></mrow></msub><msup><mrow><mn>2</mn></mrow><mrow><mi>n</mi></mrow></msup></mrow></math></span>. In the case that <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> is algebraic over <span><math><mi>Q</mi></math></span> of degree <span><math><mrow><mi>d</mi><mo>≥</mo><mn>2</mn></mrow></math></span>, we prove that the <span><math><mi>N</mi></math></span>th 2-adic complexity of <span><math><mi>S</mi></math></span> is at least <span><math><mrow><mfrac><mrow><mi>N</mi></mrow><mrow><mi>d</mi></mrow></mfrac><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, where the implied constant depends only on the minimal polynomial of <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span>. This result is an analog of the bound of Mérai and the second author on the linear complexity of automatic sequences, that is, sequences with algebraic <span><math><mrow><msub><mrow><mi>G</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span> over the rational function field <span><math><mrow><msub><mrow><mi>F</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></math></span>.</div><div>We further discuss the most important case <span><math><mrow><mi>d</mi><mo>=</mo><mn>2</mn></mrow></math></span> in both settings and explain that the intersection of the set of 2-adic algebraic sequences and the set of automatic sequences is the set of (eventually) periodic sequences. Finally, we provide some experimental results supporting the conjecture that 2-adic algebraic sequences can have also a desirable <span><math><mi>N</mi></math></span>th linear complexity and automatic sequences a desirable <span><math><mi>N</mi></math></span>th 2-adic complexity, respectively.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"373 \",\"pages\":\"Pages 279-289\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2500263X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2500263X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

我们用2进整数GS(2)=∑n=0∞sn2n识别了一个二进制序列S=(sn)n=0∞。在GS(2)是阶数d≥2的Q上代数的情况下,证明了S的第n个2进复杂度至少为Nd+O(1),其中隐含常数仅依赖于GS(2)的最小多项式。这个结果类似于msamrai和第二作者关于在有理函数域F2(X)上具有代数GS(X)的自动序列的线性复杂度的界。我们进一步讨论了在这两种情况下最重要的情况d=2,并解释了2进代数序列集合与自动序列集合的交集是周期序列集合。最后,我们提供了一些实验结果,分别支持2进代数序列具有理想的n阶线性复杂度和自动序列具有理想的n阶2进复杂度的猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Nth 2-adic complexity of binary sequences identified with algebraic 2-adic integers
We identify a binary sequence S=(sn)n=0 with the 2-adic integer GS(2)=n=0sn2n. In the case that GS(2) is algebraic over Q of degree d2, we prove that the Nth 2-adic complexity of S is at least Nd+O(1), where the implied constant depends only on the minimal polynomial of GS(2). This result is an analog of the bound of Mérai and the second author on the linear complexity of automatic sequences, that is, sequences with algebraic GS(X) over the rational function field F2(X).
We further discuss the most important case d=2 in both settings and explain that the intersection of the set of 2-adic algebraic sequences and the set of automatic sequences is the set of (eventually) periodic sequences. Finally, we provide some experimental results supporting the conjecture that 2-adic algebraic sequences can have also a desirable Nth linear complexity and automatic sequences a desirable Nth 2-adic complexity, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信