在自动化的道路上:气相色谱-质谱数据分析化学计量策略的比较综述

IF 11.8 1区 化学 Q1 CHEMISTRY, ANALYTICAL
Agnieszka Smolinska , Samuele Pellacani , Michal Skawinski , Caterina Durante
{"title":"在自动化的道路上:气相色谱-质谱数据分析化学计量策略的比较综述","authors":"Agnieszka Smolinska ,&nbsp;Samuele Pellacani ,&nbsp;Michal Skawinski ,&nbsp;Caterina Durante","doi":"10.1016/j.trac.2025.118286","DOIUrl":null,"url":null,"abstract":"<div><div>It is widely proved in the literature the pivotal role of GC-MS technique in obtaining information across diverse research contexts. Given the great importance of GC-MS analysis and the undeniable role of chemometric techniques in signal processing, this review provides perspectives on the latest automatic procedures for performing peak detection, resolution, baseline, and time-shift correction. Herein, insights into the principles behind the most common chemometric methods in scientific literature, PARAFAC2 (PARAllel FACtor analysis 2) and MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares), are provided, along with their respective strengths and limitations. In particular, regarding PARAFAC2, the PARADISe (PARAFAC2-based Deconvolution and Identification System) has been further described, while for MCR-ALS, the latest automated procedures have been explored. The aim of this review is to shed light on the evolving field of automatic GC-MS data analysis and to facilitate the advancement of this field.</div></div>","PeriodicalId":439,"journal":{"name":"Trends in Analytical Chemistry","volume":"190 ","pages":"Article 118286"},"PeriodicalIF":11.8000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the road to automation: a comparative review on chemometric strategies for GC-MS data analysis\",\"authors\":\"Agnieszka Smolinska ,&nbsp;Samuele Pellacani ,&nbsp;Michal Skawinski ,&nbsp;Caterina Durante\",\"doi\":\"10.1016/j.trac.2025.118286\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is widely proved in the literature the pivotal role of GC-MS technique in obtaining information across diverse research contexts. Given the great importance of GC-MS analysis and the undeniable role of chemometric techniques in signal processing, this review provides perspectives on the latest automatic procedures for performing peak detection, resolution, baseline, and time-shift correction. Herein, insights into the principles behind the most common chemometric methods in scientific literature, PARAFAC2 (PARAllel FACtor analysis 2) and MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares), are provided, along with their respective strengths and limitations. In particular, regarding PARAFAC2, the PARADISe (PARAFAC2-based Deconvolution and Identification System) has been further described, while for MCR-ALS, the latest automated procedures have been explored. The aim of this review is to shed light on the evolving field of automatic GC-MS data analysis and to facilitate the advancement of this field.</div></div>\",\"PeriodicalId\":439,\"journal\":{\"name\":\"Trends in Analytical Chemistry\",\"volume\":\"190 \",\"pages\":\"Article 118286\"},\"PeriodicalIF\":11.8000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Trends in Analytical Chemistry\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0165993625001542\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ANALYTICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Trends in Analytical Chemistry","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0165993625001542","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

摘要

在文献中广泛证明了GC-MS技术在不同研究背景下获取信息的关键作用。鉴于GC-MS分析的重要性和化学计量学技术在信号处理中的不可否认的作用,本文综述了执行峰检测、分辨率、基线和时移校正的最新自动程序的观点。本文介绍了科学文献中最常见的化学计量学方法PARAFAC2(平行因子分析2)和MCR-ALS(多元曲线分辨率-交替最小二乘)背后的原理,以及它们各自的优势和局限性。特别是,对于PARAFAC2, PARADISe(基于PARAFAC2的反褶积和识别系统)得到了进一步的描述,而对于MCR-ALS,则探索了最新的自动化程序。本文综述了气相色谱-质谱自动数据分析领域的发展现状,以期促进该领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the road to automation: a comparative review on chemometric strategies for GC-MS data analysis
It is widely proved in the literature the pivotal role of GC-MS technique in obtaining information across diverse research contexts. Given the great importance of GC-MS analysis and the undeniable role of chemometric techniques in signal processing, this review provides perspectives on the latest automatic procedures for performing peak detection, resolution, baseline, and time-shift correction. Herein, insights into the principles behind the most common chemometric methods in scientific literature, PARAFAC2 (PARAllel FACtor analysis 2) and MCR-ALS (Multivariate Curve Resolution - Alternating Least Squares), are provided, along with their respective strengths and limitations. In particular, regarding PARAFAC2, the PARADISe (PARAFAC2-based Deconvolution and Identification System) has been further described, while for MCR-ALS, the latest automated procedures have been explored. The aim of this review is to shed light on the evolving field of automatic GC-MS data analysis and to facilitate the advancement of this field.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Trends in Analytical Chemistry
Trends in Analytical Chemistry 化学-分析化学
CiteScore
20.00
自引率
4.60%
发文量
257
审稿时长
3.4 months
期刊介绍: TrAC publishes succinct and critical overviews of recent advancements in analytical chemistry, designed to assist analytical chemists and other users of analytical techniques. These reviews offer excellent, up-to-date, and timely coverage of various topics within analytical chemistry. Encompassing areas such as analytical instrumentation, biomedical analysis, biomolecular analysis, biosensors, chemical analysis, chemometrics, clinical chemistry, drug discovery, environmental analysis and monitoring, food analysis, forensic science, laboratory automation, materials science, metabolomics, pesticide-residue analysis, pharmaceutical analysis, proteomics, surface science, and water analysis and monitoring, these critical reviews provide comprehensive insights for practitioners in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信