Ewan MacDonald , Ludger Johannes , Christian Wunder
{"title":"质膜酸化","authors":"Ewan MacDonald , Ludger Johannes , Christian Wunder","doi":"10.1016/j.ceb.2025.102531","DOIUrl":null,"url":null,"abstract":"<div><div>The pH balance between extracellular and intracellular space is crucial for a multitude of cellular processes. Real-time observation of pH fluctuations in the range 4–9 in live cells and tissues in a sensitive, non-invasive manner has become feasible with advances in pH quantification by organic dyes, genetically encoded fluorescent proteins, and DNA-based probes. We discuss mechanisms through which pH affects cell cycle, transcription, senescence, neurotransmission, glycolipid-lectin driven endocytosis, tissue remodelling, immune responses, and GPCR signalling. Growth factor-stimulated acidification of the extracellular space notably triggers enzymatic reactions like desialylation at the plasma membrane that control processes involving cell migration and bone resorption. Research into the role of pH in cellular physiology continues to be a fertile ground for discovery that underscores its fundamental importance.</div></div>","PeriodicalId":50608,"journal":{"name":"Current Opinion in Cell Biology","volume":"95 ","pages":"Article 102531"},"PeriodicalIF":6.0000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Acidification on the plasma membrane\",\"authors\":\"Ewan MacDonald , Ludger Johannes , Christian Wunder\",\"doi\":\"10.1016/j.ceb.2025.102531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The pH balance between extracellular and intracellular space is crucial for a multitude of cellular processes. Real-time observation of pH fluctuations in the range 4–9 in live cells and tissues in a sensitive, non-invasive manner has become feasible with advances in pH quantification by organic dyes, genetically encoded fluorescent proteins, and DNA-based probes. We discuss mechanisms through which pH affects cell cycle, transcription, senescence, neurotransmission, glycolipid-lectin driven endocytosis, tissue remodelling, immune responses, and GPCR signalling. Growth factor-stimulated acidification of the extracellular space notably triggers enzymatic reactions like desialylation at the plasma membrane that control processes involving cell migration and bone resorption. Research into the role of pH in cellular physiology continues to be a fertile ground for discovery that underscores its fundamental importance.</div></div>\",\"PeriodicalId\":50608,\"journal\":{\"name\":\"Current Opinion in Cell Biology\",\"volume\":\"95 \",\"pages\":\"Article 102531\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2025-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Cell Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0955067425000699\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0955067425000699","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
The pH balance between extracellular and intracellular space is crucial for a multitude of cellular processes. Real-time observation of pH fluctuations in the range 4–9 in live cells and tissues in a sensitive, non-invasive manner has become feasible with advances in pH quantification by organic dyes, genetically encoded fluorescent proteins, and DNA-based probes. We discuss mechanisms through which pH affects cell cycle, transcription, senescence, neurotransmission, glycolipid-lectin driven endocytosis, tissue remodelling, immune responses, and GPCR signalling. Growth factor-stimulated acidification of the extracellular space notably triggers enzymatic reactions like desialylation at the plasma membrane that control processes involving cell migration and bone resorption. Research into the role of pH in cellular physiology continues to be a fertile ground for discovery that underscores its fundamental importance.
期刊介绍:
Current Opinion in Cell Biology (COCEBI) is a highly respected journal that specializes in publishing authoritative, comprehensive, and systematic reviews in the field of cell biology. The journal's primary aim is to provide a clear and readable synthesis of the latest advances in cell biology, helping specialists stay current with the rapidly evolving field. Expert authors contribute to the journal by annotating and highlighting the most significant papers from the extensive body of research published annually, offering valuable insights and saving time for readers by distilling key findings.
COCEBI is part of the Current Opinion and Research (CO+RE) suite of journals, which leverages the legacy of editorial excellence, high impact, and global reach to ensure that the journal is a widely read resource integral to scientists' workflow. It is published by Elsevier, a publisher known for its commitment to excellence in scientific publishing and the communication of reproducible biomedical research aimed at improving human health. The journal's content is designed to be an invaluable resource for a diverse audience, including researchers, lecturers, teachers, professionals, policymakers, and students.