{"title":"DLScanner:一个由深度学习方法辅助的参数空间扫描包","authors":"A. Hammad , Raymundo Ramos","doi":"10.1016/j.cpc.2025.109659","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce a scanner package enhanced by deep learning (DL) techniques. The proposed package addresses two significant challenges associated with previously developed DL-based methods: slow convergence in high-dimensional scans and the limited generalization of the DL network when mapping random points to the target space. To tackle the first issue, we use a similarity learning network that maps sampled points into a representation space. In this space, in-target points are grouped together while out-target points are effectively pushed apart. This approach enhances the scan convergence by refining the representation of sampled points. The second challenge is mitigated by integrating a dynamic sampling strategy. Specifically, we employ a VEGAS mapping to adaptively suggest new points for the DL network while also improving the mapping when more points are collected. Our proposed framework demonstrates substantial gains in performance and efficiency compared to other scanning methods.</div></div>","PeriodicalId":285,"journal":{"name":"Computer Physics Communications","volume":"314 ","pages":"Article 109659"},"PeriodicalIF":7.2000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DLScanner: A parameter space scanner package assisted by deep learning methods\",\"authors\":\"A. Hammad , Raymundo Ramos\",\"doi\":\"10.1016/j.cpc.2025.109659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce a scanner package enhanced by deep learning (DL) techniques. The proposed package addresses two significant challenges associated with previously developed DL-based methods: slow convergence in high-dimensional scans and the limited generalization of the DL network when mapping random points to the target space. To tackle the first issue, we use a similarity learning network that maps sampled points into a representation space. In this space, in-target points are grouped together while out-target points are effectively pushed apart. This approach enhances the scan convergence by refining the representation of sampled points. The second challenge is mitigated by integrating a dynamic sampling strategy. Specifically, we employ a VEGAS mapping to adaptively suggest new points for the DL network while also improving the mapping when more points are collected. Our proposed framework demonstrates substantial gains in performance and efficiency compared to other scanning methods.</div></div>\",\"PeriodicalId\":285,\"journal\":{\"name\":\"Computer Physics Communications\",\"volume\":\"314 \",\"pages\":\"Article 109659\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Physics Communications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0010465525001614\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Physics Communications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0010465525001614","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
DLScanner: A parameter space scanner package assisted by deep learning methods
In this paper, we introduce a scanner package enhanced by deep learning (DL) techniques. The proposed package addresses two significant challenges associated with previously developed DL-based methods: slow convergence in high-dimensional scans and the limited generalization of the DL network when mapping random points to the target space. To tackle the first issue, we use a similarity learning network that maps sampled points into a representation space. In this space, in-target points are grouped together while out-target points are effectively pushed apart. This approach enhances the scan convergence by refining the representation of sampled points. The second challenge is mitigated by integrating a dynamic sampling strategy. Specifically, we employ a VEGAS mapping to adaptively suggest new points for the DL network while also improving the mapping when more points are collected. Our proposed framework demonstrates substantial gains in performance and efficiency compared to other scanning methods.
期刊介绍:
The focus of CPC is on contemporary computational methods and techniques and their implementation, the effectiveness of which will normally be evidenced by the author(s) within the context of a substantive problem in physics. Within this setting CPC publishes two types of paper.
Computer Programs in Physics (CPiP)
These papers describe significant computer programs to be archived in the CPC Program Library which is held in the Mendeley Data repository. The submitted software must be covered by an approved open source licence. Papers and associated computer programs that address a problem of contemporary interest in physics that cannot be solved by current software are particularly encouraged.
Computational Physics Papers (CP)
These are research papers in, but are not limited to, the following themes across computational physics and related disciplines.
mathematical and numerical methods and algorithms;
computational models including those associated with the design, control and analysis of experiments; and
algebraic computation.
Each will normally include software implementation and performance details. The software implementation should, ideally, be available via GitHub, Zenodo or an institutional repository.In addition, research papers on the impact of advanced computer architecture and special purpose computers on computing in the physical sciences and software topics related to, and of importance in, the physical sciences may be considered.