Ti3C2Tx增强聚酰亚胺涂层磨损与热力学参数的关系

IF 5.3 2区 材料科学 Q1 MATERIALS SCIENCE, COATINGS & FILMS
Guoshuang Hua , Meng Cai , Xiaoqiang Fan , Minhao Zhu
{"title":"Ti3C2Tx增强聚酰亚胺涂层磨损与热力学参数的关系","authors":"Guoshuang Hua ,&nbsp;Meng Cai ,&nbsp;Xiaoqiang Fan ,&nbsp;Minhao Zhu","doi":"10.1016/j.surfcoat.2025.132264","DOIUrl":null,"url":null,"abstract":"<div><div>Polyimide (PI) demonstrates exceptional thermal stability but suffers from limited wear resistance, restricting its applications in friction environments. Herein, we repot a mechanically blended Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-PI composite coating with optimized interfacial bonding. Leveraging the exceptional mechanical properties of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, the composite coating achieves remarkable performance enhancements. The experimental results reveal that the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-PI coating shows outstanding mechanical properties, with hardness, tensile strength, and fracture stress values of 228.7 MPa, 64.46 MPa, and 40.55 MPa, respectively. Additionally, it exhibits superior thermal stability (T<sub>g</sub> = 347.8 °C). Compared to the PI coating, the wear rate of the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-PI coating under low and high loads is reduced by 47.34 % and 72.03 %, respectively, and the wear width decreases by 158 μm and 209 μm. Molecular dynamics (MD) simulation results show that Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> has a higher binding energy with PI-precursor solution (−20.4 kcal/mol). This enhancement is attributed to the robust interface interactions between the abundant functional groups on the surface of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and PI, ensuring uniform dispersion of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> within the PI matrix and achieving effective dispersion strength. This study reveals a significant correlation between the wear resistance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-enhanced polyimide coatings and key thermal/mechanical parameters, offering new insights for the design of high-performance wear-resistant materials.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":"511 ","pages":"Article 132264"},"PeriodicalIF":5.3000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Correlation between wear and thermal/mechanical parameters of Ti3C2Tx enhanced polyimide coating\",\"authors\":\"Guoshuang Hua ,&nbsp;Meng Cai ,&nbsp;Xiaoqiang Fan ,&nbsp;Minhao Zhu\",\"doi\":\"10.1016/j.surfcoat.2025.132264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polyimide (PI) demonstrates exceptional thermal stability but suffers from limited wear resistance, restricting its applications in friction environments. Herein, we repot a mechanically blended Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-PI composite coating with optimized interfacial bonding. Leveraging the exceptional mechanical properties of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>, the composite coating achieves remarkable performance enhancements. The experimental results reveal that the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-PI coating shows outstanding mechanical properties, with hardness, tensile strength, and fracture stress values of 228.7 MPa, 64.46 MPa, and 40.55 MPa, respectively. Additionally, it exhibits superior thermal stability (T<sub>g</sub> = 347.8 °C). Compared to the PI coating, the wear rate of the Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> MXene-PI coating under low and high loads is reduced by 47.34 % and 72.03 %, respectively, and the wear width decreases by 158 μm and 209 μm. Molecular dynamics (MD) simulation results show that Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> has a higher binding energy with PI-precursor solution (−20.4 kcal/mol). This enhancement is attributed to the robust interface interactions between the abundant functional groups on the surface of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> and PI, ensuring uniform dispersion of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub> within the PI matrix and achieving effective dispersion strength. This study reveals a significant correlation between the wear resistance of Ti<sub>3</sub>C<sub>2</sub>T<sub>x</sub>-enhanced polyimide coatings and key thermal/mechanical parameters, offering new insights for the design of high-performance wear-resistant materials.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":\"511 \",\"pages\":\"Article 132264\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897225005389\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897225005389","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
引用次数: 0

摘要

聚酰亚胺(PI)具有优异的热稳定性,但耐磨性有限,限制了其在摩擦环境中的应用。在此,我们报道了一种具有优化界面键合的机械混合Ti3C2Tx MXene-PI复合涂层。利用Ti3C2Tx优异的机械性能,复合涂层实现了显著的性能增强。实验结果表明,Ti3C2Tx MXene-PI涂层具有优异的力学性能,硬度、抗拉强度和断裂应力值分别为228.7 MPa、64.46 MPa和40.55 MPa。此外,它还具有优异的热稳定性(Tg = 347.8℃)。与PI涂层相比,Ti3C2Tx MXene-PI涂层在低载荷和高载荷下的磨损率分别降低了47.34%和72.03%,磨损宽度分别减小了158 μm和209 μm。分子动力学(MD)模拟结果表明,Ti3C2Tx与pi前驱体溶液具有较高的结合能(- 20.4 kcal/mol)。这种增强是由于Ti3C2Tx表面丰富的官能团与PI之间具有强大的界面相互作用,保证了Ti3C2Tx在PI矩阵内的均匀分散,实现了有效的分散强度。该研究揭示了ti3c2tx增强聚酰亚胺涂层的耐磨性与关键热/力学参数之间的显著相关性,为高性能耐磨材料的设计提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Correlation between wear and thermal/mechanical parameters of Ti3C2Tx enhanced polyimide coating
Polyimide (PI) demonstrates exceptional thermal stability but suffers from limited wear resistance, restricting its applications in friction environments. Herein, we repot a mechanically blended Ti3C2Tx MXene-PI composite coating with optimized interfacial bonding. Leveraging the exceptional mechanical properties of Ti3C2Tx, the composite coating achieves remarkable performance enhancements. The experimental results reveal that the Ti3C2Tx MXene-PI coating shows outstanding mechanical properties, with hardness, tensile strength, and fracture stress values of 228.7 MPa, 64.46 MPa, and 40.55 MPa, respectively. Additionally, it exhibits superior thermal stability (Tg = 347.8 °C). Compared to the PI coating, the wear rate of the Ti3C2Tx MXene-PI coating under low and high loads is reduced by 47.34 % and 72.03 %, respectively, and the wear width decreases by 158 μm and 209 μm. Molecular dynamics (MD) simulation results show that Ti3C2Tx has a higher binding energy with PI-precursor solution (−20.4 kcal/mol). This enhancement is attributed to the robust interface interactions between the abundant functional groups on the surface of Ti3C2Tx and PI, ensuring uniform dispersion of Ti3C2Tx within the PI matrix and achieving effective dispersion strength. This study reveals a significant correlation between the wear resistance of Ti3C2Tx-enhanced polyimide coatings and key thermal/mechanical parameters, offering new insights for the design of high-performance wear-resistant materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Surface & Coatings Technology
Surface & Coatings Technology 工程技术-材料科学:膜
CiteScore
10.00
自引率
11.10%
发文量
921
审稿时长
19 days
期刊介绍: Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance: A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting. B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信