{"title":"非标准量子so(2N−1)的表示理论","authors":"Stefan Kolb, Jake Stephens","doi":"10.1016/j.jpaa.2025.107990","DOIUrl":null,"url":null,"abstract":"<div><div>We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of type <em>DII</em> corresponding to the symmetric pair <span><math><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>,</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined over an arbitrary field <em>k</em> and <span><math><mi>q</mi><mo>∈</mo><mi>k</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> not a root of unity we establish a one-to-one correspondence between finite dimensional, simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules and dominant integral weights for <span><math><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We use specialisation to show that the category of finite dimensional <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules is semisimple if <span><math><mrow><mi>char</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <em>q</em> is transcendental over <span><math><mi>Q</mi></math></span>. In this case the characters of simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type <em>DII</em> can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107990"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation theory of very non-standard quantum so(2N−1)\",\"authors\":\"Stefan Kolb, Jake Stephens\",\"doi\":\"10.1016/j.jpaa.2025.107990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of type <em>DII</em> corresponding to the symmetric pair <span><math><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>,</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined over an arbitrary field <em>k</em> and <span><math><mi>q</mi><mo>∈</mo><mi>k</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> not a root of unity we establish a one-to-one correspondence between finite dimensional, simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules and dominant integral weights for <span><math><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We use specialisation to show that the category of finite dimensional <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules is semisimple if <span><math><mrow><mi>char</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <em>q</em> is transcendental over <span><math><mi>Q</mi></math></span>. In this case the characters of simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type <em>DII</em> can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107990\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492500129X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500129X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Representation theory of very non-standard quantum so(2N−1)
We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra of type DII corresponding to the symmetric pair . For defined over an arbitrary field k and not a root of unity we establish a one-to-one correspondence between finite dimensional, simple -modules and dominant integral weights for . We use specialisation to show that the category of finite dimensional -modules is semisimple if and q is transcendental over . In this case the characters of simple -modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type DII can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group .
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.