非标准量子so(2N−1)的表示理论

IF 0.7 2区 数学 Q2 MATHEMATICS
Stefan Kolb, Jake Stephens
{"title":"非标准量子so(2N−1)的表示理论","authors":"Stefan Kolb,&nbsp;Jake Stephens","doi":"10.1016/j.jpaa.2025.107990","DOIUrl":null,"url":null,"abstract":"<div><div>We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of type <em>DII</em> corresponding to the symmetric pair <span><math><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>,</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined over an arbitrary field <em>k</em> and <span><math><mi>q</mi><mo>∈</mo><mi>k</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> not a root of unity we establish a one-to-one correspondence between finite dimensional, simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules and dominant integral weights for <span><math><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We use specialisation to show that the category of finite dimensional <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules is semisimple if <span><math><mrow><mi>char</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <em>q</em> is transcendental over <span><math><mi>Q</mi></math></span>. In this case the characters of simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type <em>DII</em> can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>)</mo></math></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":"229 7","pages":"Article 107990"},"PeriodicalIF":0.7000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Representation theory of very non-standard quantum so(2N−1)\",\"authors\":\"Stefan Kolb,&nbsp;Jake Stephens\",\"doi\":\"10.1016/j.jpaa.2025.107990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> of type <em>DII</em> corresponding to the symmetric pair <span><math><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>,</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>)</mo></math></span>. For <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span> defined over an arbitrary field <em>k</em> and <span><math><mi>q</mi><mo>∈</mo><mi>k</mi><mo>∖</mo><mo>{</mo><mn>0</mn><mo>}</mo></math></span> not a root of unity we establish a one-to-one correspondence between finite dimensional, simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules and dominant integral weights for <span><math><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>)</mo></math></span>. We use specialisation to show that the category of finite dimensional <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules is semisimple if <span><math><mrow><mi>char</mi></mrow><mo>(</mo><mi>k</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span> and <em>q</em> is transcendental over <span><math><mi>Q</mi></math></span>. In this case the characters of simple <span><math><msub><mrow><mi>B</mi></mrow><mrow><mi>c</mi></mrow></msub></math></span>-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type <em>DII</em> can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group <span><math><msub><mrow><mi>U</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mrow><mi>so</mi></mrow><mo>(</mo><mn>2</mn><mi>N</mi><mo>)</mo><mo>)</mo></math></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":\"229 7\",\"pages\":\"Article 107990\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S002240492500129X\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S002240492500129X","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们分类了DII型量子对称对共理想子代数Bc对应于对称对(so(2N),so(2N−1))的有限维表示。对于定义在任意域k上的Bc,且q∈k∈{0}不是单位根,我们建立了有限维简单Bc模与so(2N−1)的优势积分权之间的一一对应关系。我们利用专一化证明了有限维bc模的范畴是半简单的,如果char(k)=0且q是超越q的。在这种情况下,简单bc模的特征由Weyl的特征公式给出。这特别意味着DII型量子对称对可以用来获得Drinfeld-Jimbo量子群Uq(so(2N))的不可约表示的Gelfand-Tsetlin基。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Representation theory of very non-standard quantum so(2N−1)
We classify the finite dimensional representations of the quantum symmetric pair coideal subalgebra Bc of type DII corresponding to the symmetric pair (so(2N),so(2N1)). For Bc defined over an arbitrary field k and qk{0} not a root of unity we establish a one-to-one correspondence between finite dimensional, simple Bc-modules and dominant integral weights for so(2N1). We use specialisation to show that the category of finite dimensional Bc-modules is semisimple if char(k)=0 and q is transcendental over Q. In this case the characters of simple Bc-modules are given by Weyl's character formula. This means in particular that the quantum symmetric pair of type DII can be used to obtain Gelfand-Tsetlin bases for irreducible representations of the Drinfeld-Jimbo quantum group Uq(so(2N)).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信