Simon Vendelbo Bylling Jensen, Nicolas Tancogne-Dejean, Angel Rubio, Lars Bojer Madsen
{"title":"超越材料中光-物质相互作用的电偶极子处理:体硅中非偶极子谐波的产生","authors":"Simon Vendelbo Bylling Jensen, Nicolas Tancogne-Dejean, Angel Rubio, Lars Bojer Madsen","doi":"10.1103/physrevlett.134.196902","DOIUrl":null,"url":null,"abstract":"A beyond electric-dipole light-matter theory is needed to describe emerging x-ray and THz applications for characterization and control of quantum materials but inaccessible as nondipole lattice-aperiodic terms impede on the use of Bloch’s theorem. To circumvent this, we derive a formalism that captures dominant nondipole effects in intense electromagnetic fields while conserving lattice translational symmetry. Our approach enables the first accurate nondipole first-principles microscopic simulation of nonperturbative harmonic generation in Si. We reveal nondipole-induced transverse currents generating perturbative even-ordered harmonics and display the onset of nondipole high harmonic generation near the laser damage threshold. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"1 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Beyond Electric-Dipole Treatment of Light-Matter Interactions in Materials: Nondipole Harmonic Generation in Bulk Si\",\"authors\":\"Simon Vendelbo Bylling Jensen, Nicolas Tancogne-Dejean, Angel Rubio, Lars Bojer Madsen\",\"doi\":\"10.1103/physrevlett.134.196902\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A beyond electric-dipole light-matter theory is needed to describe emerging x-ray and THz applications for characterization and control of quantum materials but inaccessible as nondipole lattice-aperiodic terms impede on the use of Bloch’s theorem. To circumvent this, we derive a formalism that captures dominant nondipole effects in intense electromagnetic fields while conserving lattice translational symmetry. Our approach enables the first accurate nondipole first-principles microscopic simulation of nonperturbative harmonic generation in Si. We reveal nondipole-induced transverse currents generating perturbative even-ordered harmonics and display the onset of nondipole high harmonic generation near the laser damage threshold. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.134.196902\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.134.196902","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Beyond Electric-Dipole Treatment of Light-Matter Interactions in Materials: Nondipole Harmonic Generation in Bulk Si
A beyond electric-dipole light-matter theory is needed to describe emerging x-ray and THz applications for characterization and control of quantum materials but inaccessible as nondipole lattice-aperiodic terms impede on the use of Bloch’s theorem. To circumvent this, we derive a formalism that captures dominant nondipole effects in intense electromagnetic fields while conserving lattice translational symmetry. Our approach enables the first accurate nondipole first-principles microscopic simulation of nonperturbative harmonic generation in Si. We reveal nondipole-induced transverse currents generating perturbative even-ordered harmonics and display the onset of nondipole high harmonic generation near the laser damage threshold. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks