碳量子点修饰层状Mn-MOF用于饮料中微量过氧化氢的高效检测

IF 5.5 3区 材料科学 Q1 ELECTROCHEMISTRY
Yin-Xia Sun , Li-Ping Liu , Xue Bai , Lu-Lu Gao , Wen-Qing Hu , Wen-Yu Han , Yu Sun , Zhe-Peng Deng , Wan-Hong Sun , Jian-Jun Wang , Li Xu
{"title":"碳量子点修饰层状Mn-MOF用于饮料中微量过氧化氢的高效检测","authors":"Yin-Xia Sun ,&nbsp;Li-Ping Liu ,&nbsp;Xue Bai ,&nbsp;Lu-Lu Gao ,&nbsp;Wen-Qing Hu ,&nbsp;Wen-Yu Han ,&nbsp;Yu Sun ,&nbsp;Zhe-Peng Deng ,&nbsp;Wan-Hong Sun ,&nbsp;Jian-Jun Wang ,&nbsp;Li Xu","doi":"10.1016/j.electacta.2025.146469","DOIUrl":null,"url":null,"abstract":"<div><div>Developing high-sensitivity hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) sensors is crucial. Metal organic frameworks (MOFs) are considered one of the ideal materials for developing H<sub>2</sub>O<sub>2</sub> sensors for their adjustable pore size and diverse topological structures. In this work, solvothermal synthesis is utilized CQD@Mn-MOF using carbon quantum dots (CQDs) and two-dimensional Mn-MOF ([Mn(Tib)(H<sub>2</sub>O)<sub>3</sub>]·(TPA)·3H<sub>2</sub>O, Tib = 1,3,5-triamidazolylbenzene, TPA = terephthalic acid) as precursors. Interestingly, CQD@Mn-MOF as an electrochemical sensor can effectively detect H<sub>2</sub>O<sub>2</sub> with a lower detection limit of 14.7 μM, and higher sensitivity (approximately 5 times that of pure Mn-MOF). CQD@Mn-MOF sensor is capable of detecting H<sub>2</sub>O<sub>2</sub> with high selectivity in the presence of other interfering agents such as proline, ascorbic acid, glucose, and various metal salts. In addition, CQD@Mn-MOF electrochemical sensor has been used to effectively determine the H<sub>2</sub>O<sub>2</sub> content in actual beverages such as fruit juice and beer. The sensing mechanism has been reasonably analyzed that the MnO<sub>2</sub> produced by Mn<sup>2+</sup> + H<sub>2</sub>O<sub>2</sub> = MnO<sub>2</sub> + 2H<sup>+</sup> reaction acts as a specific catalyst for H<sub>2</sub>O<sub>2</sub> decomposition reaction (MnO<sub>2</sub> + H<sub>2</sub>O<sub>2</sub> + 2H<sup>+</sup> = Mn<sup>2+</sup> + O<sub>2</sub> + 2H<sub>2</sub>O). This sensing mechanism further ensures the high selectivity of the sensor for H<sub>2</sub>O<sub>2</sub>. Significantly, the introduction of CQD not only improves the conductivity of Mn-MOF, but also can provide more active sites in the catalytic reaction, improve the contact area and reaction rate of the reaction, and improve the catalytic performance of Mn-MOF, further improve the sensitivity.</div></div>","PeriodicalId":305,"journal":{"name":"Electrochimica Acta","volume":"532 ","pages":"Article 146469"},"PeriodicalIF":5.5000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Layered Mn-MOF modified with carbon quantum dots for efficient detection of trace hydrogen peroxide in beverages\",\"authors\":\"Yin-Xia Sun ,&nbsp;Li-Ping Liu ,&nbsp;Xue Bai ,&nbsp;Lu-Lu Gao ,&nbsp;Wen-Qing Hu ,&nbsp;Wen-Yu Han ,&nbsp;Yu Sun ,&nbsp;Zhe-Peng Deng ,&nbsp;Wan-Hong Sun ,&nbsp;Jian-Jun Wang ,&nbsp;Li Xu\",\"doi\":\"10.1016/j.electacta.2025.146469\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing high-sensitivity hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) sensors is crucial. Metal organic frameworks (MOFs) are considered one of the ideal materials for developing H<sub>2</sub>O<sub>2</sub> sensors for their adjustable pore size and diverse topological structures. In this work, solvothermal synthesis is utilized CQD@Mn-MOF using carbon quantum dots (CQDs) and two-dimensional Mn-MOF ([Mn(Tib)(H<sub>2</sub>O)<sub>3</sub>]·(TPA)·3H<sub>2</sub>O, Tib = 1,3,5-triamidazolylbenzene, TPA = terephthalic acid) as precursors. Interestingly, CQD@Mn-MOF as an electrochemical sensor can effectively detect H<sub>2</sub>O<sub>2</sub> with a lower detection limit of 14.7 μM, and higher sensitivity (approximately 5 times that of pure Mn-MOF). CQD@Mn-MOF sensor is capable of detecting H<sub>2</sub>O<sub>2</sub> with high selectivity in the presence of other interfering agents such as proline, ascorbic acid, glucose, and various metal salts. In addition, CQD@Mn-MOF electrochemical sensor has been used to effectively determine the H<sub>2</sub>O<sub>2</sub> content in actual beverages such as fruit juice and beer. The sensing mechanism has been reasonably analyzed that the MnO<sub>2</sub> produced by Mn<sup>2+</sup> + H<sub>2</sub>O<sub>2</sub> = MnO<sub>2</sub> + 2H<sup>+</sup> reaction acts as a specific catalyst for H<sub>2</sub>O<sub>2</sub> decomposition reaction (MnO<sub>2</sub> + H<sub>2</sub>O<sub>2</sub> + 2H<sup>+</sup> = Mn<sup>2+</sup> + O<sub>2</sub> + 2H<sub>2</sub>O). This sensing mechanism further ensures the high selectivity of the sensor for H<sub>2</sub>O<sub>2</sub>. Significantly, the introduction of CQD not only improves the conductivity of Mn-MOF, but also can provide more active sites in the catalytic reaction, improve the contact area and reaction rate of the reaction, and improve the catalytic performance of Mn-MOF, further improve the sensitivity.</div></div>\",\"PeriodicalId\":305,\"journal\":{\"name\":\"Electrochimica Acta\",\"volume\":\"532 \",\"pages\":\"Article 146469\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrochimica Acta\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S001346862500831X\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrochimica Acta","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S001346862500831X","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

开发高灵敏度过氧化氢(H2O2)传感器至关重要。金属有机骨架(MOFs)因其孔径可调和拓扑结构多样而被认为是开发H2O2传感器的理想材料之一。本研究以碳量子点(CQDs)和二维Mn- mof ([Mn(Tib)(H2O)3]·(TPA)·3H2O, Tib = 1,3,5-三脒偶苯,TPA = 对苯二甲酸)为前体,采用溶剂热合成技术CQD@Mn-MOF。有趣的是,CQD@Mn-MOF作为电化学传感器可以有效地检测H2O2,检测限低至14.7 μM,灵敏度更高(约为纯Mn-MOF的5倍)。CQD@Mn-MOF传感器能够在脯氨酸、抗坏血酸、葡萄糖和各种金属盐等其他干扰剂存在的情况下,高选择性地检测H2O2。另外,利用CQD@Mn-MOF电化学传感器对果汁、啤酒等实际饮料中的H2O2含量进行了有效的测定。传感机制合理分析,汇总由Mn2 + + 过氧化氢 = 汇总 + 2 h +反应作为一个特定的催化剂过氧化氢分解反应(汇总 + 过氧化氢 + 2 h + = Mn2 + + O2 + 2水)。这种传感机制进一步保证了传感器对H2O2的高选择性。值得注意的是,CQD的引入不仅提高了Mn-MOF的导电性,还可以在催化反应中提供更多的活性位点,提高反应的接触面积和反应速率,提高Mn-MOF的催化性能,进一步提高灵敏度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Layered Mn-MOF modified with carbon quantum dots for efficient detection of trace hydrogen peroxide in beverages

Layered Mn-MOF modified with carbon quantum dots for efficient detection of trace hydrogen peroxide in beverages
Developing high-sensitivity hydrogen peroxide (H2O2) sensors is crucial. Metal organic frameworks (MOFs) are considered one of the ideal materials for developing H2O2 sensors for their adjustable pore size and diverse topological structures. In this work, solvothermal synthesis is utilized CQD@Mn-MOF using carbon quantum dots (CQDs) and two-dimensional Mn-MOF ([Mn(Tib)(H2O)3]·(TPA)·3H2O, Tib = 1,3,5-triamidazolylbenzene, TPA = terephthalic acid) as precursors. Interestingly, CQD@Mn-MOF as an electrochemical sensor can effectively detect H2O2 with a lower detection limit of 14.7 μM, and higher sensitivity (approximately 5 times that of pure Mn-MOF). CQD@Mn-MOF sensor is capable of detecting H2O2 with high selectivity in the presence of other interfering agents such as proline, ascorbic acid, glucose, and various metal salts. In addition, CQD@Mn-MOF electrochemical sensor has been used to effectively determine the H2O2 content in actual beverages such as fruit juice and beer. The sensing mechanism has been reasonably analyzed that the MnO2 produced by Mn2+ + H2O2 = MnO2 + 2H+ reaction acts as a specific catalyst for H2O2 decomposition reaction (MnO2 + H2O2 + 2H+ = Mn2+ + O2 + 2H2O). This sensing mechanism further ensures the high selectivity of the sensor for H2O2. Significantly, the introduction of CQD not only improves the conductivity of Mn-MOF, but also can provide more active sites in the catalytic reaction, improve the contact area and reaction rate of the reaction, and improve the catalytic performance of Mn-MOF, further improve the sensitivity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Electrochimica Acta
Electrochimica Acta 工程技术-电化学
CiteScore
11.30
自引率
6.10%
发文量
1634
审稿时长
41 days
期刊介绍: Electrochimica Acta is an international journal. It is intended for the publication of both original work and reviews in the field of electrochemistry. Electrochemistry should be interpreted to mean any of the research fields covered by the Divisions of the International Society of Electrochemistry listed below, as well as emerging scientific domains covered by ISE New Topics Committee.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信