解码胶原蛋白的热诱导展开和再折叠途径

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Alaa Al-Shaer, Nancy R. Forde
{"title":"解码胶原蛋白的热诱导展开和再折叠途径","authors":"Alaa Al-Shaer, Nancy R. Forde","doi":"10.1073/pnas.2420308122","DOIUrl":null,"url":null,"abstract":"Collagen has been evolutionarily selected as the preferred building block of extracellular structures. Despite inherent thermodynamic instability of individual proteins at body temperature, collagen manages to assemble into higher-order structures that provide mechanical support to tissues. Sequence features that enhance collagen stability have been deduced primarily from studies of collagen-mimetic peptides, as collagen’s large size has precluded high-resolution studies of its structure. Thus, methods are needed to analyze the structure and mechanics of full-length collagen proteins. In this study, we used AFM imaging to investigate the thermal response of collagen type IV, a key component of basement membranes. We observed a time-dependent loss of folded structures upon exposure to body temperature, with structural destabilization along the collagenous domain reflected by shorter contour lengths (seen also for collagens type I and III). We characterized the sequence-dependent bending stiffness profile of collagen IV as a function of temperature and identified a putative initiation site for thermally induced unfolding. Interchain disulfide bonds in collagen IV were shown to enhance thermal stability and serve as primary nucleation sites for in vitro refolding. In contrast to the canonical C-to-N-terminal folding direction, we found an interchain cystine knot to enable folding in the opposite direction. A multiple sequence alignment revealed that this cystine knot is evolutionarily conserved across metazoan phyla, highlighting its significance in the stabilization of early collagen IV structures. Our findings provide mechanistic insight into the unfolding and refolding pathways of collagen IV, and how its heterogeneous sequence influences stability and mechanics.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"52 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decoding collagen’s thermally induced unfolding and refolding pathways\",\"authors\":\"Alaa Al-Shaer, Nancy R. Forde\",\"doi\":\"10.1073/pnas.2420308122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Collagen has been evolutionarily selected as the preferred building block of extracellular structures. Despite inherent thermodynamic instability of individual proteins at body temperature, collagen manages to assemble into higher-order structures that provide mechanical support to tissues. Sequence features that enhance collagen stability have been deduced primarily from studies of collagen-mimetic peptides, as collagen’s large size has precluded high-resolution studies of its structure. Thus, methods are needed to analyze the structure and mechanics of full-length collagen proteins. In this study, we used AFM imaging to investigate the thermal response of collagen type IV, a key component of basement membranes. We observed a time-dependent loss of folded structures upon exposure to body temperature, with structural destabilization along the collagenous domain reflected by shorter contour lengths (seen also for collagens type I and III). We characterized the sequence-dependent bending stiffness profile of collagen IV as a function of temperature and identified a putative initiation site for thermally induced unfolding. Interchain disulfide bonds in collagen IV were shown to enhance thermal stability and serve as primary nucleation sites for in vitro refolding. In contrast to the canonical C-to-N-terminal folding direction, we found an interchain cystine knot to enable folding in the opposite direction. A multiple sequence alignment revealed that this cystine knot is evolutionarily conserved across metazoan phyla, highlighting its significance in the stabilization of early collagen IV structures. Our findings provide mechanistic insight into the unfolding and refolding pathways of collagen IV, and how its heterogeneous sequence influences stability and mechanics.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"52 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2420308122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2420308122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

胶原蛋白在进化中被选择为细胞外结构的首选构建块。尽管单个蛋白质在体温下存在固有的热力学不稳定性,胶原蛋白仍能组装成更高阶的结构,为组织提供机械支持。增强胶原稳定性的序列特征主要是从模拟胶原肽的研究中推断出来的,因为胶原的大尺寸阻碍了对其结构的高分辨率研究。因此,需要有方法来分析全长胶原蛋白的结构和力学。在这项研究中,我们使用AFM成像来研究IV型胶原的热反应,IV型胶原是基底膜的关键成分。我们观察到在暴露于体温下折叠结构的时间依赖性损失,沿胶原结构域的结构不稳定通过较短的轮廓长度反映出来(也见于I型和III型胶原)。我们将IV型胶原蛋白的序列依赖性弯曲刚度曲线表征为温度的函数,并确定了热诱导展开的假定起始位点。胶原中的链间二硫键增强了热稳定性,并作为体外再折叠的主要成核位点。与典型的c - n端折叠方向相反,我们发现了一个链间胱氨酸结,使折叠方向相反。多序列比对显示,这个胱氨酸结在后生动物门中是进化保守的,突出了它在早期胶原IV结构稳定中的重要性。我们的研究结果为IV型胶原蛋白的展开和折叠途径以及其异质序列如何影响稳定性和力学提供了机制见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Decoding collagen’s thermally induced unfolding and refolding pathways
Collagen has been evolutionarily selected as the preferred building block of extracellular structures. Despite inherent thermodynamic instability of individual proteins at body temperature, collagen manages to assemble into higher-order structures that provide mechanical support to tissues. Sequence features that enhance collagen stability have been deduced primarily from studies of collagen-mimetic peptides, as collagen’s large size has precluded high-resolution studies of its structure. Thus, methods are needed to analyze the structure and mechanics of full-length collagen proteins. In this study, we used AFM imaging to investigate the thermal response of collagen type IV, a key component of basement membranes. We observed a time-dependent loss of folded structures upon exposure to body temperature, with structural destabilization along the collagenous domain reflected by shorter contour lengths (seen also for collagens type I and III). We characterized the sequence-dependent bending stiffness profile of collagen IV as a function of temperature and identified a putative initiation site for thermally induced unfolding. Interchain disulfide bonds in collagen IV were shown to enhance thermal stability and serve as primary nucleation sites for in vitro refolding. In contrast to the canonical C-to-N-terminal folding direction, we found an interchain cystine knot to enable folding in the opposite direction. A multiple sequence alignment revealed that this cystine knot is evolutionarily conserved across metazoan phyla, highlighting its significance in the stabilization of early collagen IV structures. Our findings provide mechanistic insight into the unfolding and refolding pathways of collagen IV, and how its heterogeneous sequence influences stability and mechanics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信