结合空间转录组学和组织形态学

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Eduard Chelebian, Christophe Avenel, Carolina Wählby
{"title":"结合空间转录组学和组织形态学","authors":"Eduard Chelebian, Christophe Avenel, Carolina Wählby","doi":"10.1038/s41467-025-58989-8","DOIUrl":null,"url":null,"abstract":"<p>Spatial transcriptomics has transformed our understanding of tissue architecture by preserving the spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. This review introduces a framework for categorizing methods that combine spatial transcriptomics with tissue morphology, focusing on either translating or integrating morphological features into spatial transcriptomics. Translation involves using morphology to predict gene expression, creating super-resolution maps or inferring genetic information from H&amp;E-stained samples. Integration enriches spatial transcriptomics by identifying morphological features that complement gene expression. We also explore learning strategies and future directions for this emerging field.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"28 1","pages":"4452"},"PeriodicalIF":15.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Combining spatial transcriptomics with tissue morphology\",\"authors\":\"Eduard Chelebian, Christophe Avenel, Carolina Wählby\",\"doi\":\"10.1038/s41467-025-58989-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Spatial transcriptomics has transformed our understanding of tissue architecture by preserving the spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. This review introduces a framework for categorizing methods that combine spatial transcriptomics with tissue morphology, focusing on either translating or integrating morphological features into spatial transcriptomics. Translation involves using morphology to predict gene expression, creating super-resolution maps or inferring genetic information from H&amp;E-stained samples. Integration enriches spatial transcriptomics by identifying morphological features that complement gene expression. We also explore learning strategies and future directions for this emerging field.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"28 1\",\"pages\":\"4452\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58989-8\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58989-8","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

空间转录组学通过保留基因表达模式的空间背景改变了我们对组织结构的理解。同时,人工智能成像技术的进步使提取描述组织的形态特征成为可能。本文介绍了将空间转录组学与组织形态学相结合的分类方法的框架,重点是将形态学特征翻译或整合到空间转录组学中。翻译包括使用形态学来预测基因表达,创建超分辨率图谱或从H&; e染色样品中推断遗传信息。整合通过识别补充基因表达的形态特征丰富了空间转录组学。我们还探讨了这一新兴领域的学习策略和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Combining spatial transcriptomics with tissue morphology

Combining spatial transcriptomics with tissue morphology

Spatial transcriptomics has transformed our understanding of tissue architecture by preserving the spatial context of gene expression patterns. Simultaneously, advances in imaging AI have enabled extraction of morphological features describing the tissue. This review introduces a framework for categorizing methods that combine spatial transcriptomics with tissue morphology, focusing on either translating or integrating morphological features into spatial transcriptomics. Translation involves using morphology to predict gene expression, creating super-resolution maps or inferring genetic information from H&E-stained samples. Integration enriches spatial transcriptomics by identifying morphological features that complement gene expression. We also explore learning strategies and future directions for this emerging field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信