{"title":"三态激发态下亚甲酰亚胺与甲基乙烯酮[3+2]环加成反应的机理:分子电子密度理论研究","authors":"Luis R. Domingo , Patricia Pérez , Assem Barakat","doi":"10.1002/ejoc.202500241","DOIUrl":null,"url":null,"abstract":"<div><div>The [3+2] cycloaddition (32CA) reaction of an azomethine ylide with methyl vinyl ketone in the ground and first triplet excited states has been studied within the framework of molecular electron density theory. A density functional theory‐based reactivity analysis indicates that, while azomethine ylide behaves as a supernucleophile in both states, vinyl ketone acts as a strong electrophile. This 32CA reaction presents a very low activation energy both in the ground state, 3.40 kcal mol<sup>−1</sup>, and in the triplet state, 1.47 kcal mol<sup>−1</sup>, in the gas phase. While in the ground state, the 32CA reaction is entirely <em>ortho</em> regio and fully <em>endo</em> stereoselective, in the triplet state it is entirely <em>ortho</em> regioselective but only partially <em>endo</em> stereoselective. In the ground state, the reaction proceeds to form the spirooxindole after passing through the transition state structure, whereas in the triplet state, the reaction stops at a biradical intermediate, which requires an intersystem crossing to yield the final spirooxindole. Analysis of the kinetic parameters of the 32CA reaction in the two states in methanol indicates that in the triplet state, the reaction is only 589 times faster than in the ground state.</div></div>","PeriodicalId":167,"journal":{"name":"European Journal of Organic Chemistry","volume":"28 24","pages":"Article e202500241"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic Insights into the [3+2] Cycloaddition Reaction of Azomethine Ylides with Methyl Vinyl Ketone in the Triplet Excited State: A Molecular Electron Density Theory Study\",\"authors\":\"Luis R. Domingo , Patricia Pérez , Assem Barakat\",\"doi\":\"10.1002/ejoc.202500241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The [3+2] cycloaddition (32CA) reaction of an azomethine ylide with methyl vinyl ketone in the ground and first triplet excited states has been studied within the framework of molecular electron density theory. A density functional theory‐based reactivity analysis indicates that, while azomethine ylide behaves as a supernucleophile in both states, vinyl ketone acts as a strong electrophile. This 32CA reaction presents a very low activation energy both in the ground state, 3.40 kcal mol<sup>−1</sup>, and in the triplet state, 1.47 kcal mol<sup>−1</sup>, in the gas phase. While in the ground state, the 32CA reaction is entirely <em>ortho</em> regio and fully <em>endo</em> stereoselective, in the triplet state it is entirely <em>ortho</em> regioselective but only partially <em>endo</em> stereoselective. In the ground state, the reaction proceeds to form the spirooxindole after passing through the transition state structure, whereas in the triplet state, the reaction stops at a biradical intermediate, which requires an intersystem crossing to yield the final spirooxindole. Analysis of the kinetic parameters of the 32CA reaction in the two states in methanol indicates that in the triplet state, the reaction is only 589 times faster than in the ground state.</div></div>\",\"PeriodicalId\":167,\"journal\":{\"name\":\"European Journal of Organic Chemistry\",\"volume\":\"28 24\",\"pages\":\"Article e202500241\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-06-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Organic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1434193X2500307X\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Organic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1434193X2500307X","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
Mechanistic Insights into the [3+2] Cycloaddition Reaction of Azomethine Ylides with Methyl Vinyl Ketone in the Triplet Excited State: A Molecular Electron Density Theory Study
The [3+2] cycloaddition (32CA) reaction of an azomethine ylide with methyl vinyl ketone in the ground and first triplet excited states has been studied within the framework of molecular electron density theory. A density functional theory‐based reactivity analysis indicates that, while azomethine ylide behaves as a supernucleophile in both states, vinyl ketone acts as a strong electrophile. This 32CA reaction presents a very low activation energy both in the ground state, 3.40 kcal mol−1, and in the triplet state, 1.47 kcal mol−1, in the gas phase. While in the ground state, the 32CA reaction is entirely ortho regio and fully endo stereoselective, in the triplet state it is entirely ortho regioselective but only partially endo stereoselective. In the ground state, the reaction proceeds to form the spirooxindole after passing through the transition state structure, whereas in the triplet state, the reaction stops at a biradical intermediate, which requires an intersystem crossing to yield the final spirooxindole. Analysis of the kinetic parameters of the 32CA reaction in the two states in methanol indicates that in the triplet state, the reaction is only 589 times faster than in the ground state.
期刊介绍:
The European Journal of Organic Chemistry (2019 ISI Impact Factor 2.889) publishes Full Papers, Communications, and Minireviews from the entire spectrum of synthetic organic, bioorganic and physical-organic chemistry. It is published on behalf of Chemistry Europe, an association of 16 European chemical societies.
The following journals have been merged to form two leading journals, the European Journal of Organic Chemistry and the European Journal of Inorganic Chemistry:
Liebigs Annalen
Bulletin des Sociétés Chimiques Belges
Bulletin de la Société Chimique de France
Gazzetta Chimica Italiana
Recueil des Travaux Chimiques des Pays-Bas
Anales de Química
Chimika Chronika
Revista Portuguesa de Química
ACH—Models in Chemistry
Polish Journal of Chemistry.