氮-空位-氮色中心:氮掺杂金刚石中普遍存在的可见和近红外量子发射体

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-05-14 DOI:10.1021/acsnano.4c18283
Brett C. Johnson, Mitchell O. de Vries, Alexander J Healey, Marco Capelli, Anjay Manian, Giannis Thalassinos, Amanda N. Abraham, Harini Hapuarachchi, Tingpeng Luo, Vadym N. Mochalin, Jan Jeske, Jared H. Cole, Salvy Russo, Brant C. Gibson, Alastair Stacey, Philipp Reineck
{"title":"氮-空位-氮色中心:氮掺杂金刚石中普遍存在的可见和近红外量子发射体","authors":"Brett C. Johnson, Mitchell O. de Vries, Alexander J Healey, Marco Capelli, Anjay Manian, Giannis Thalassinos, Amanda N. Abraham, Harini Hapuarachchi, Tingpeng Luo, Vadym N. Mochalin, Jan Jeske, Jared H. Cole, Salvy Russo, Brant C. Gibson, Alastair Stacey, Philipp Reineck","doi":"10.1021/acsnano.4c18283","DOIUrl":null,"url":null,"abstract":"Photoluminescent defects in diamond, such as the nitrogen-vacancy (NV) color center, are at the forefront of emerging optical quantum technologies. Most emit in the visible and near-infrared spectral region below 1000 nm (NIR-I), limiting their applications in photonics, fiber communications, and biology. Here, we show that the nitrogen-vacancy-nitrogen (N<sub>2</sub>V) center, which emits in the visible and near-infrared-II (NIR-II, 1000–1700 nm), is ubiquitous in as-synthesized and processed nitrogen-doped diamond, ranging from bulk samples to nanoparticles. We demonstrate that N<sub>2</sub>V is also present in commercially available state-of-the-art NV diamond sensing chips made via chemical vapor deposition (CVD). In high-pressure high-temperature (HPHT) diamonds, the photoluminescence (PL) intensity of both N<sub>2</sub>V charge states, N<sub>2</sub>V<sup>0</sup> in the visible and N<sub>2</sub>V<sup>–</sup> in the NIR-II, increases with increasing substitutional nitrogen concentration. We determine the PL lifetime of N<sub>2</sub>V<sup>–</sup> to be 0.3 ns and compare a quantum optical and density functional theory model of the N<sub>2</sub>V<sup>–</sup> with experimental PL spectra. Finally, we show that detonation nanodiamonds (DND) exhibit stable PL in the NIR-II, which we attribute to the N<sub>2</sub>V color center, and use this NIR-II PL to image DNDs inside skin cells. Our results contribute to the scientific and technological exploration and development of the N<sub>2</sub>V color center and help elucidate interactions with other color centers in diamond.","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"20 1","pages":""},"PeriodicalIF":16.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Nitrogen-Vacancy-Nitrogen Color Center: A Ubiquitous Visible and Near-Infrared-II Quantum Emitter in Nitrogen-Doped Diamond\",\"authors\":\"Brett C. Johnson, Mitchell O. de Vries, Alexander J Healey, Marco Capelli, Anjay Manian, Giannis Thalassinos, Amanda N. Abraham, Harini Hapuarachchi, Tingpeng Luo, Vadym N. Mochalin, Jan Jeske, Jared H. Cole, Salvy Russo, Brant C. Gibson, Alastair Stacey, Philipp Reineck\",\"doi\":\"10.1021/acsnano.4c18283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Photoluminescent defects in diamond, such as the nitrogen-vacancy (NV) color center, are at the forefront of emerging optical quantum technologies. Most emit in the visible and near-infrared spectral region below 1000 nm (NIR-I), limiting their applications in photonics, fiber communications, and biology. Here, we show that the nitrogen-vacancy-nitrogen (N<sub>2</sub>V) center, which emits in the visible and near-infrared-II (NIR-II, 1000–1700 nm), is ubiquitous in as-synthesized and processed nitrogen-doped diamond, ranging from bulk samples to nanoparticles. We demonstrate that N<sub>2</sub>V is also present in commercially available state-of-the-art NV diamond sensing chips made via chemical vapor deposition (CVD). In high-pressure high-temperature (HPHT) diamonds, the photoluminescence (PL) intensity of both N<sub>2</sub>V charge states, N<sub>2</sub>V<sup>0</sup> in the visible and N<sub>2</sub>V<sup>–</sup> in the NIR-II, increases with increasing substitutional nitrogen concentration. We determine the PL lifetime of N<sub>2</sub>V<sup>–</sup> to be 0.3 ns and compare a quantum optical and density functional theory model of the N<sub>2</sub>V<sup>–</sup> with experimental PL spectra. Finally, we show that detonation nanodiamonds (DND) exhibit stable PL in the NIR-II, which we attribute to the N<sub>2</sub>V color center, and use this NIR-II PL to image DNDs inside skin cells. Our results contribute to the scientific and technological exploration and development of the N<sub>2</sub>V color center and help elucidate interactions with other color centers in diamond.\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.4c18283\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.4c18283","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

金刚石的光致发光缺陷,如氮空位(NV)色心,是新兴光学量子技术的前沿。大多数发射在1000 nm以下的可见光和近红外光谱区域(NIR-I),限制了它们在光子学,光纤通信和生物学中的应用。在这里,我们发现氮-空位-氮(N2V)中心在可见光和近红外- ii (NIR-II, 1000-1700 nm)中普遍存在于合成和加工的氮掺杂金刚石中,从体样品到纳米颗粒。我们证明了N2V也存在于通过化学气相沉积(CVD)制成的商业上最先进的NV金刚石传感芯片中。在高压高温(HPHT)金刚石中,N2V电荷态(可见光态N2V0和NIR-II态N2V -)的光致发光(PL)强度随着取代态氮浓度的增加而增加。我们确定N2V -的PL寿命为0.3 ns,并将N2V -的量子光学和密度泛函理论模型与实验PL光谱进行了比较。最后,我们发现爆轰纳米金刚石(DND)在NIR-II中表现出稳定的PL,我们将其归因于N2V色中心,并使用该NIR-II PL成像皮肤细胞内的DND。我们的研究结果有助于N2V色心的科学技术探索和发展,并有助于阐明钻石中其他色心的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

The Nitrogen-Vacancy-Nitrogen Color Center: A Ubiquitous Visible and Near-Infrared-II Quantum Emitter in Nitrogen-Doped Diamond

The Nitrogen-Vacancy-Nitrogen Color Center: A Ubiquitous Visible and Near-Infrared-II Quantum Emitter in Nitrogen-Doped Diamond
Photoluminescent defects in diamond, such as the nitrogen-vacancy (NV) color center, are at the forefront of emerging optical quantum technologies. Most emit in the visible and near-infrared spectral region below 1000 nm (NIR-I), limiting their applications in photonics, fiber communications, and biology. Here, we show that the nitrogen-vacancy-nitrogen (N2V) center, which emits in the visible and near-infrared-II (NIR-II, 1000–1700 nm), is ubiquitous in as-synthesized and processed nitrogen-doped diamond, ranging from bulk samples to nanoparticles. We demonstrate that N2V is also present in commercially available state-of-the-art NV diamond sensing chips made via chemical vapor deposition (CVD). In high-pressure high-temperature (HPHT) diamonds, the photoluminescence (PL) intensity of both N2V charge states, N2V0 in the visible and N2V in the NIR-II, increases with increasing substitutional nitrogen concentration. We determine the PL lifetime of N2V to be 0.3 ns and compare a quantum optical and density functional theory model of the N2V with experimental PL spectra. Finally, we show that detonation nanodiamonds (DND) exhibit stable PL in the NIR-II, which we attribute to the N2V color center, and use this NIR-II PL to image DNDs inside skin cells. Our results contribute to the scientific and technological exploration and development of the N2V color center and help elucidate interactions with other color centers in diamond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信