三种水稻飞虱的系统发育和毒性基因组分析,以阐明趋同和不同的杀虫剂抗性谱

IF 4.1 1区 农林科学 Q1 ENTOMOLOGY
Kai Lin, Hongxin Wu, Zhongsheng Li, Zichun Zhong, Liuyan He, Yujing Guo, Jie Zhang, Xiaoxia Xu, Wenqing Zhang, Fengliang Jin, Rui Pang
{"title":"三种水稻飞虱的系统发育和毒性基因组分析,以阐明趋同和不同的杀虫剂抗性谱","authors":"Kai Lin, Hongxin Wu, Zhongsheng Li, Zichun Zhong, Liuyan He, Yujing Guo, Jie Zhang, Xiaoxia Xu, Wenqing Zhang, Fengliang Jin, Rui Pang","doi":"10.1007/s10340-025-01913-2","DOIUrl":null,"url":null,"abstract":"<p>Insecticide resistance in pest control poses a threat to agricultural production and human health. Numerous insect species express genes coding for detoxification enzymes that have broad substrate promiscuity thus conferring resistance to various insecticides. However, whether the homologs of these genes play similar roles in resistance phenotypes of closely related species remains largely unclear. Therefore, this study compares the resistance profiles of three major rice planthopper species (Delphacidae) (<i>Laodelphax striatellus</i>, <i>Nilaparvata lugens</i>, and <i>Sogatella furcifera</i>) based on the metabolic activity of their cytochrome P450s. Genome-wide analyses resulted in 68, 70, and 64 P450 genes in <i>L. striatellus</i>, <i>N. lugens</i>, and <i>S. furcifera</i>, respectively. Phylogenetic analyses among these genes found that most resistance-related genes in one species had homologs in other planthopper species. The most resistance-relevant orthogroup (<i>CYP6ER</i>s) showed higher evolutionary instability than most other groups. RNAi and in vitro metabolism assays revealed that <i>CYP6ER</i>s confers more divergent insecticide resistance profiles among planthopper species than the other two major resistance-related P450 subfamilies (<i>CYP6AY</i>s and <i>CYP4C61</i>s). Alphafold-based structural predictions and alignments suggested that P450 orthogroups with higher phylogenetic instability tended to have less structural similarities, resulting in more divergent metabolic profiles. This relationship was also in silico validated on Aphidae aphids and Lepidoptera noctuids. This study proposes combined phylogenetic and toxicogenomic analyses for understanding CYPome-based insecticide resistance convergency and divergency among closely related pests. These findings may improve the accuracy and rationality of chemical pest control.</p>","PeriodicalId":16736,"journal":{"name":"Journal of Pest Science","volume":"123 1","pages":""},"PeriodicalIF":4.1000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phylogenetic and toxicogenomic profiling of CYPomes to elucidate convergent and divergent insecticide resistance profiles in three rice planthopper species\",\"authors\":\"Kai Lin, Hongxin Wu, Zhongsheng Li, Zichun Zhong, Liuyan He, Yujing Guo, Jie Zhang, Xiaoxia Xu, Wenqing Zhang, Fengliang Jin, Rui Pang\",\"doi\":\"10.1007/s10340-025-01913-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Insecticide resistance in pest control poses a threat to agricultural production and human health. Numerous insect species express genes coding for detoxification enzymes that have broad substrate promiscuity thus conferring resistance to various insecticides. However, whether the homologs of these genes play similar roles in resistance phenotypes of closely related species remains largely unclear. Therefore, this study compares the resistance profiles of three major rice planthopper species (Delphacidae) (<i>Laodelphax striatellus</i>, <i>Nilaparvata lugens</i>, and <i>Sogatella furcifera</i>) based on the metabolic activity of their cytochrome P450s. Genome-wide analyses resulted in 68, 70, and 64 P450 genes in <i>L. striatellus</i>, <i>N. lugens</i>, and <i>S. furcifera</i>, respectively. Phylogenetic analyses among these genes found that most resistance-related genes in one species had homologs in other planthopper species. The most resistance-relevant orthogroup (<i>CYP6ER</i>s) showed higher evolutionary instability than most other groups. RNAi and in vitro metabolism assays revealed that <i>CYP6ER</i>s confers more divergent insecticide resistance profiles among planthopper species than the other two major resistance-related P450 subfamilies (<i>CYP6AY</i>s and <i>CYP4C61</i>s). Alphafold-based structural predictions and alignments suggested that P450 orthogroups with higher phylogenetic instability tended to have less structural similarities, resulting in more divergent metabolic profiles. This relationship was also in silico validated on Aphidae aphids and Lepidoptera noctuids. This study proposes combined phylogenetic and toxicogenomic analyses for understanding CYPome-based insecticide resistance convergency and divergency among closely related pests. These findings may improve the accuracy and rationality of chemical pest control.</p>\",\"PeriodicalId\":16736,\"journal\":{\"name\":\"Journal of Pest Science\",\"volume\":\"123 1\",\"pages\":\"\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pest Science\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1007/s10340-025-01913-2\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENTOMOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pest Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10340-025-01913-2","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENTOMOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

害虫防治中的抗药性对农业生产和人类健康构成威胁。许多昆虫物种表达编码解毒酶的基因,这些基因具有广泛的底物混杂性,从而赋予对各种杀虫剂的抗性。然而,这些基因的同系物是否在密切相关物种的抗性表型中发挥类似作用仍不清楚。因此,本研究基于细胞色素p450的代谢活性,比较了3种水稻飞虱(褐飞虱科)(ladelphax striatellus、Nilaparvata lugens和Sogatella furcifera)的抗性谱。全基因组分析结果显示,纹状乳杆菌、卢根乳杆菌和furcifera分别有68个、70个和64个P450基因。对这些基因的系统发育分析发现,一种稻飞虱的大多数抗性相关基因在其他稻飞虱物种中具有同源基因。与大多数其他类群相比,与耐药性最相关的正群(CYP6ERs)表现出更高的进化不稳定性。RNAi和体外代谢分析显示,与其他两个主要抗性相关的P450亚家族(CYP6AYs和CYP4C61s)相比,CYP6ERs在飞虱物种之间具有更大的杀虫剂抗性谱差异。基于alphafold的结构预测和比对表明,具有较高系统发育不稳定性的P450正群往往具有较少的结构相似性,从而导致更多的代谢谱差异。这种关系在蚜虫科和夜蛾鳞翅目中也得到了计算机验证。本研究提出结合系统发育和毒物基因组学分析,以了解密切相关害虫之间基于cypome的杀虫剂抗性趋同和分化。研究结果可提高化学防治害虫的准确性和合理性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Phylogenetic and toxicogenomic profiling of CYPomes to elucidate convergent and divergent insecticide resistance profiles in three rice planthopper species

Insecticide resistance in pest control poses a threat to agricultural production and human health. Numerous insect species express genes coding for detoxification enzymes that have broad substrate promiscuity thus conferring resistance to various insecticides. However, whether the homologs of these genes play similar roles in resistance phenotypes of closely related species remains largely unclear. Therefore, this study compares the resistance profiles of three major rice planthopper species (Delphacidae) (Laodelphax striatellus, Nilaparvata lugens, and Sogatella furcifera) based on the metabolic activity of their cytochrome P450s. Genome-wide analyses resulted in 68, 70, and 64 P450 genes in L. striatellus, N. lugens, and S. furcifera, respectively. Phylogenetic analyses among these genes found that most resistance-related genes in one species had homologs in other planthopper species. The most resistance-relevant orthogroup (CYP6ERs) showed higher evolutionary instability than most other groups. RNAi and in vitro metabolism assays revealed that CYP6ERs confers more divergent insecticide resistance profiles among planthopper species than the other two major resistance-related P450 subfamilies (CYP6AYs and CYP4C61s). Alphafold-based structural predictions and alignments suggested that P450 orthogroups with higher phylogenetic instability tended to have less structural similarities, resulting in more divergent metabolic profiles. This relationship was also in silico validated on Aphidae aphids and Lepidoptera noctuids. This study proposes combined phylogenetic and toxicogenomic analyses for understanding CYPome-based insecticide resistance convergency and divergency among closely related pests. These findings may improve the accuracy and rationality of chemical pest control.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pest Science
Journal of Pest Science 生物-昆虫学
CiteScore
10.40
自引率
8.30%
发文量
114
审稿时长
6-12 weeks
期刊介绍: Journal of Pest Science publishes high-quality papers on all aspects of pest science in agriculture, horticulture (including viticulture), forestry, urban pests, and stored products research, including health and safety issues. Journal of Pest Science reports on advances in control of pests and animal vectors of diseases, the biology, ethology and ecology of pests and their antagonists, and the use of other beneficial organisms in pest control. The journal covers all noxious or damaging groups of animals, including arthropods, nematodes, molluscs, and vertebrates. Journal of Pest Science devotes special attention to emerging and innovative pest control strategies, including the side effects of such approaches on non-target organisms, for example natural enemies and pollinators, and the implementation of these strategies in integrated pest management. Journal of Pest Science also publishes papers on the management of agro- and forest ecosystems where this is relevant to pest control. Papers on important methodological developments relevant for pest control will be considered as well.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信