Pei Tang, Mohsen Ameri, Qiaoli Liang, Peter I. Udenze, Zhongliang Ouyang, Megan Brown, Logan Smith, Igor Fedin, Dawen Li
{"title":"大分子界面调制提高钙钛矿太阳能电池的效率和稳定性","authors":"Pei Tang, Mohsen Ameri, Qiaoli Liang, Peter I. Udenze, Zhongliang Ouyang, Megan Brown, Logan Smith, Igor Fedin, Dawen Li","doi":"10.1021/acsami.5c04332","DOIUrl":null,"url":null,"abstract":"Both high-power conversion efficiency (PCE) and long-term stability are critical needs for a reliable perovskite solar cell (PSC). In this work, a polyamidoamine (PAMAM) dendrimer is employed to enhance the efficiency and stability of double-cation-based PSCs via different fabrication scenarios. Based on our experimental results and numerical analysis, the application of a thin layer of PAMAM macromolecules at the interface of the perovskite absorber and the hole transport layer gives rise to enhanced performance, including both efficiency and stability due to reduced interface defects and lower carrier recombination. The results suggest that PAMAM as a capping layer can effectively passivate the surface defects of the perovskite film. As a result, a PCE of 22.8% has been achieved, while the reference devices without the PAMAM passivation layer exhibit a PCE of 20.9%. The operational stability at maximum power point (MPP) under continuous 1 sun illumination and dark storage stability show that the target perovskite/PAMAM device retains 80% of its initial PCE after 1000 h. Our research could significantly impact the field by providing valuable insights into surface passivation using macromolecules to improve the performance of perovskite-based photovoltaic devices.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"122 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interface Modulation by Macromolecules for Enhancing the Efficiency and Stability of Perovskite Solar Cells\",\"authors\":\"Pei Tang, Mohsen Ameri, Qiaoli Liang, Peter I. Udenze, Zhongliang Ouyang, Megan Brown, Logan Smith, Igor Fedin, Dawen Li\",\"doi\":\"10.1021/acsami.5c04332\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Both high-power conversion efficiency (PCE) and long-term stability are critical needs for a reliable perovskite solar cell (PSC). In this work, a polyamidoamine (PAMAM) dendrimer is employed to enhance the efficiency and stability of double-cation-based PSCs via different fabrication scenarios. Based on our experimental results and numerical analysis, the application of a thin layer of PAMAM macromolecules at the interface of the perovskite absorber and the hole transport layer gives rise to enhanced performance, including both efficiency and stability due to reduced interface defects and lower carrier recombination. The results suggest that PAMAM as a capping layer can effectively passivate the surface defects of the perovskite film. As a result, a PCE of 22.8% has been achieved, while the reference devices without the PAMAM passivation layer exhibit a PCE of 20.9%. The operational stability at maximum power point (MPP) under continuous 1 sun illumination and dark storage stability show that the target perovskite/PAMAM device retains 80% of its initial PCE after 1000 h. Our research could significantly impact the field by providing valuable insights into surface passivation using macromolecules to improve the performance of perovskite-based photovoltaic devices.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"122 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.5c04332\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.5c04332","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Interface Modulation by Macromolecules for Enhancing the Efficiency and Stability of Perovskite Solar Cells
Both high-power conversion efficiency (PCE) and long-term stability are critical needs for a reliable perovskite solar cell (PSC). In this work, a polyamidoamine (PAMAM) dendrimer is employed to enhance the efficiency and stability of double-cation-based PSCs via different fabrication scenarios. Based on our experimental results and numerical analysis, the application of a thin layer of PAMAM macromolecules at the interface of the perovskite absorber and the hole transport layer gives rise to enhanced performance, including both efficiency and stability due to reduced interface defects and lower carrier recombination. The results suggest that PAMAM as a capping layer can effectively passivate the surface defects of the perovskite film. As a result, a PCE of 22.8% has been achieved, while the reference devices without the PAMAM passivation layer exhibit a PCE of 20.9%. The operational stability at maximum power point (MPP) under continuous 1 sun illumination and dark storage stability show that the target perovskite/PAMAM device retains 80% of its initial PCE after 1000 h. Our research could significantly impact the field by providing valuable insights into surface passivation using macromolecules to improve the performance of perovskite-based photovoltaic devices.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.