{"title":"大孔隙及其位置对薄壁高压压铸镁塑性的影响","authors":"Kyoo Sil Choi, Xin Sun, Mei Li","doi":"10.1016/j.jma.2025.04.008","DOIUrl":null,"url":null,"abstract":"High-pressure die-cast (HPDC) magnesium (Mg) and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly. The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency. However, HPDC Mg alloys face challenges related to casting defects such as porosity, cold shuts, and oxides. These defects influence tensile strength and ductility, depending on their location and size. This study employs finite element (FE) modeling to investigate how a dominant large pore, its position, and the sample size affect the ductility of thin-walled HPDC Mg. Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings, synthetic microstructure-based models are used to assess the effects of different pore sizes and locations. The results indicate the presence of three different regions based on the large pore size and model size: 1) a region dominated by the effects of the large pore, 2) a plateau region dominated by pore interactions, and 3) a transient region between these two effects. A threshold distance from the sample edge (<span><span style=\"\"></span><span data-mathml='<math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">d</mi><mo is=\"true\">&#x2248;</mo><mn is=\"true\">0.9</mn><msqrt is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">D</mi><mo is=\"true\">&#xB7;</mo><mi mathvariant=\"normal\" is=\"true\">L</mi></mrow></msqrt></mrow></math>' role=\"presentation\" style=\"font-size: 90%; display: inline-block; position: relative;\" tabindex=\"0\"><svg aria-hidden=\"true\" focusable=\"false\" height=\"2.779ex\" role=\"img\" style=\"vertical-align: -0.466ex;\" viewbox=\"0 -995.6 6116.5 1196.3\" width=\"14.206ex\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g fill=\"currentColor\" stroke=\"currentColor\" stroke-width=\"0\" transform=\"matrix(1 0 0 -1 0 0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-64\"></use></g><g is=\"true\" transform=\"translate(834,0)\"><use xlink:href=\"#MJMAIN-2248\"></use></g><g is=\"true\" transform=\"translate(1890,0)\"><use xlink:href=\"#MJMAIN-30\"></use><use x=\"500\" xlink:href=\"#MJMAIN-2E\" y=\"0\"></use><use x=\"779\" xlink:href=\"#MJMAIN-39\" y=\"0\"></use></g><g is=\"true\" transform=\"translate(3170,0)\"><use x=\"0\" xlink:href=\"#MJMAIN-221A\" y=\"64\"></use><rect height=\"60\" stroke=\"none\" width=\"2112\" x=\"833\" y=\"805\"></rect><g transform=\"translate(833,0)\"><g is=\"true\"><g is=\"true\"><use xlink:href=\"#MJMAIN-44\"></use></g><g is=\"true\" transform=\"translate(986,0)\"><use xlink:href=\"#MJMAIN-22C5\"></use></g><g is=\"true\" transform=\"translate(1487,0)\"><use xlink:href=\"#MJMAIN-4C\"></use></g></g></g></g></g></g></svg><span role=\"presentation\"><math xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">d</mi><mo is=\"true\">≈</mo><mn is=\"true\">0.9</mn><msqrt is=\"true\"><mrow is=\"true\"><mi is=\"true\" mathvariant=\"normal\">D</mi><mo is=\"true\">·</mo><mi is=\"true\" mathvariant=\"normal\">L</mi></mrow></msqrt></mrow></math></span></span><script type=\"math/mml\"><math><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">d</mi><mo is=\"true\">≈</mo><mn is=\"true\">0.9</mn><msqrt is=\"true\"><mrow is=\"true\"><mi mathvariant=\"normal\" is=\"true\">D</mi><mo is=\"true\">·</mo><mi mathvariant=\"normal\" is=\"true\">L</mi></mrow></msqrt></mrow></math></script></span>) is proposed, within which a large pore can significantly reduce ductility. Additionally, large pores near edges contribute to ductility variations in Mg castings.","PeriodicalId":16214,"journal":{"name":"Journal of Magnesium and Alloys","volume":"114 1","pages":""},"PeriodicalIF":15.8000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of a large dominant pore and its location on ductility of thin-walled high-pressure die-cast magnesium\",\"authors\":\"Kyoo Sil Choi, Xin Sun, Mei Li\",\"doi\":\"10.1016/j.jma.2025.04.008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"High-pressure die-cast (HPDC) magnesium (Mg) and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly. The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency. However, HPDC Mg alloys face challenges related to casting defects such as porosity, cold shuts, and oxides. These defects influence tensile strength and ductility, depending on their location and size. This study employs finite element (FE) modeling to investigate how a dominant large pore, its position, and the sample size affect the ductility of thin-walled HPDC Mg. Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings, synthetic microstructure-based models are used to assess the effects of different pore sizes and locations. The results indicate the presence of three different regions based on the large pore size and model size: 1) a region dominated by the effects of the large pore, 2) a plateau region dominated by pore interactions, and 3) a transient region between these two effects. A threshold distance from the sample edge (<span><span style=\\\"\\\"></span><span data-mathml='<math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">d</mi><mo is=\\\"true\\\">&#x2248;</mo><mn is=\\\"true\\\">0.9</mn><msqrt is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">D</mi><mo is=\\\"true\\\">&#xB7;</mo><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">L</mi></mrow></msqrt></mrow></math>' role=\\\"presentation\\\" style=\\\"font-size: 90%; display: inline-block; position: relative;\\\" tabindex=\\\"0\\\"><svg aria-hidden=\\\"true\\\" focusable=\\\"false\\\" height=\\\"2.779ex\\\" role=\\\"img\\\" style=\\\"vertical-align: -0.466ex;\\\" viewbox=\\\"0 -995.6 6116.5 1196.3\\\" width=\\\"14.206ex\\\" xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\"><g fill=\\\"currentColor\\\" stroke=\\\"currentColor\\\" stroke-width=\\\"0\\\" transform=\\\"matrix(1 0 0 -1 0 0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-64\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(834,0)\\\"><use xlink:href=\\\"#MJMAIN-2248\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1890,0)\\\"><use xlink:href=\\\"#MJMAIN-30\\\"></use><use x=\\\"500\\\" xlink:href=\\\"#MJMAIN-2E\\\" y=\\\"0\\\"></use><use x=\\\"779\\\" xlink:href=\\\"#MJMAIN-39\\\" y=\\\"0\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(3170,0)\\\"><use x=\\\"0\\\" xlink:href=\\\"#MJMAIN-221A\\\" y=\\\"64\\\"></use><rect height=\\\"60\\\" stroke=\\\"none\\\" width=\\\"2112\\\" x=\\\"833\\\" y=\\\"805\\\"></rect><g transform=\\\"translate(833,0)\\\"><g is=\\\"true\\\"><g is=\\\"true\\\"><use xlink:href=\\\"#MJMAIN-44\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(986,0)\\\"><use xlink:href=\\\"#MJMAIN-22C5\\\"></use></g><g is=\\\"true\\\" transform=\\\"translate(1487,0)\\\"><use xlink:href=\\\"#MJMAIN-4C\\\"></use></g></g></g></g></g></g></svg><span role=\\\"presentation\\\"><math xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">d</mi><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">0.9</mn><msqrt is=\\\"true\\\"><mrow is=\\\"true\\\"><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">D</mi><mo is=\\\"true\\\">·</mo><mi is=\\\"true\\\" mathvariant=\\\"normal\\\">L</mi></mrow></msqrt></mrow></math></span></span><script type=\\\"math/mml\\\"><math><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">d</mi><mo is=\\\"true\\\">≈</mo><mn is=\\\"true\\\">0.9</mn><msqrt is=\\\"true\\\"><mrow is=\\\"true\\\"><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">D</mi><mo is=\\\"true\\\">·</mo><mi mathvariant=\\\"normal\\\" is=\\\"true\\\">L</mi></mrow></msqrt></mrow></math></script></span>) is proposed, within which a large pore can significantly reduce ductility. Additionally, large pores near edges contribute to ductility variations in Mg castings.\",\"PeriodicalId\":16214,\"journal\":{\"name\":\"Journal of Magnesium and Alloys\",\"volume\":\"114 1\",\"pages\":\"\"},\"PeriodicalIF\":15.8000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Magnesium and Alloys\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1016/j.jma.2025.04.008\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METALLURGY & METALLURGICAL ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnesium and Alloys","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.jma.2025.04.008","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METALLURGY & METALLURGICAL ENGINEERING","Score":null,"Total":0}
Impact of a large dominant pore and its location on ductility of thin-walled high-pressure die-cast magnesium
High-pressure die-cast (HPDC) magnesium (Mg) and aluminum alloys enable vehicle lightweighting while reducing manufacturing costs by simplifying part assembly. The increasing use of super-large castings in electric vehicles enhances structural reliability and cost efficiency. However, HPDC Mg alloys face challenges related to casting defects such as porosity, cold shuts, and oxides. These defects influence tensile strength and ductility, depending on their location and size. This study employs finite element (FE) modeling to investigate how a dominant large pore, its position, and the sample size affect the ductility of thin-walled HPDC Mg. Motivated by the ductility variations reported in literature and the experimental findings on AM60 castings, synthetic microstructure-based models are used to assess the effects of different pore sizes and locations. The results indicate the presence of three different regions based on the large pore size and model size: 1) a region dominated by the effects of the large pore, 2) a plateau region dominated by pore interactions, and 3) a transient region between these two effects. A threshold distance from the sample edge () is proposed, within which a large pore can significantly reduce ductility. Additionally, large pores near edges contribute to ductility variations in Mg castings.
期刊介绍:
The Journal of Magnesium and Alloys serves as a global platform for both theoretical and experimental studies in magnesium science and engineering. It welcomes submissions investigating various scientific and engineering factors impacting the metallurgy, processing, microstructure, properties, and applications of magnesium and alloys. The journal covers all aspects of magnesium and alloy research, including raw materials, alloy casting, extrusion and deformation, corrosion and surface treatment, joining and machining, simulation and modeling, microstructure evolution and mechanical properties, new alloy development, magnesium-based composites, bio-materials and energy materials, applications, and recycling.