NUE规则保守的模型-作物增强了氮利用效率的机器学习预测。

Ji Huang,Chia-Yi Cheng,Matthew D Brooks,Tim L Jeffers,Nathan M Doner,Hung-Jui Shih,Samantha Frangos,Manpreet Singh Katari,Gloria M Coruzzi
{"title":"NUE规则保守的模型-作物增强了氮利用效率的机器学习预测。","authors":"Ji Huang,Chia-Yi Cheng,Matthew D Brooks,Tim L Jeffers,Nathan M Doner,Hung-Jui Shih,Samantha Frangos,Manpreet Singh Katari,Gloria M Coruzzi","doi":"10.1093/plcell/koaf093","DOIUrl":null,"url":null,"abstract":"Systems biology aims to uncover gene regulatory networks (GRNs) for agricultural traits, but validating them in crops is challenging. We addressed this challenge by learning and validating model-to-crop GRN regulons governing nitrogen use efficiency (NUE). First, a fine-scale time-course nitrogen (N) response transcriptome analysis revealed a conserved temporal N response cascade in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). This data was used to infer time-based causal transcription factor (TF) target edges in N-regulated GRNs (N-GRNs). By validating 23 maize TFs in a cell-based TF-perturbation assay (TARGET), precision/recall analysis enabled us to prune high-confidence edges between ∼200 TFs/700 maize target genes. We next learned gene-to-NUE trait scores using XGBoost machine learning models trained on conserved N-responsive genes across maize and Arabidopsis accessions. By integrating NUE gene scores within our N-GRN, we ranked maize TFs based on a cumulative NUE regulon score. Regulons for top-ranked TFs were validated using the cell-based TARGET assay in maize (e.g. ZmMYB34/R3→24 targets) and the Arabidopsis ZmMYB34/R3 ortholog (e.g. AtDIV1→23 targets). The genes in this NUE regulon significantly enhanced the ability of XGBoost models to predict NUE traits in both maize and Arabidopsis. Thus, our pipeline for identifying NUE regulons that combines GRN inference, machine learning, and orthologous network regulons offers a strategic framework for crop trait improvement.","PeriodicalId":501012,"journal":{"name":"The Plant Cell","volume":"8 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"NUE regulons conserved model-to-crop enhance machine learning predictions of nitrogen use efficiency.\",\"authors\":\"Ji Huang,Chia-Yi Cheng,Matthew D Brooks,Tim L Jeffers,Nathan M Doner,Hung-Jui Shih,Samantha Frangos,Manpreet Singh Katari,Gloria M Coruzzi\",\"doi\":\"10.1093/plcell/koaf093\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Systems biology aims to uncover gene regulatory networks (GRNs) for agricultural traits, but validating them in crops is challenging. We addressed this challenge by learning and validating model-to-crop GRN regulons governing nitrogen use efficiency (NUE). First, a fine-scale time-course nitrogen (N) response transcriptome analysis revealed a conserved temporal N response cascade in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). This data was used to infer time-based causal transcription factor (TF) target edges in N-regulated GRNs (N-GRNs). By validating 23 maize TFs in a cell-based TF-perturbation assay (TARGET), precision/recall analysis enabled us to prune high-confidence edges between ∼200 TFs/700 maize target genes. We next learned gene-to-NUE trait scores using XGBoost machine learning models trained on conserved N-responsive genes across maize and Arabidopsis accessions. By integrating NUE gene scores within our N-GRN, we ranked maize TFs based on a cumulative NUE regulon score. Regulons for top-ranked TFs were validated using the cell-based TARGET assay in maize (e.g. ZmMYB34/R3→24 targets) and the Arabidopsis ZmMYB34/R3 ortholog (e.g. AtDIV1→23 targets). The genes in this NUE regulon significantly enhanced the ability of XGBoost models to predict NUE traits in both maize and Arabidopsis. Thus, our pipeline for identifying NUE regulons that combines GRN inference, machine learning, and orthologous network regulons offers a strategic framework for crop trait improvement.\",\"PeriodicalId\":501012,\"journal\":{\"name\":\"The Plant Cell\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Plant Cell\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/plcell/koaf093\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Plant Cell","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/plcell/koaf093","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

系统生物学旨在揭示农业性状的基因调控网络(grn),但在作物中验证它们是具有挑战性的。我们通过学习和验证控制氮利用效率(NUE)的模型-作物GRN规则来解决这一挑战。首先,精细尺度的氮素响应转录组分析揭示了玉米(Zea mays)和拟南芥(Arabidopsis thaliana)的保守时间级联反应。该数据用于推断N-GRNs (N-GRNs)中基于时间的因果转录因子(TF)靶边。通过基于细胞的tf扰动试验(TARGET)验证23个玉米tf,精密度/召回率分析使我们能够在~ 200个tf /700个玉米靶基因之间修剪高置信度边缘。接下来,我们使用XGBoost机器学习模型,对玉米和拟南芥的保守n响应基因进行训练,学习基因- nue性状评分。通过将NUE基因得分整合到我们的N-GRN中,我们根据累积的NUE规则得分对玉米TFs进行排名。利用基于细胞的TARGET测定方法,在玉米(例如ZmMYB34/R3→24个靶标)和拟南芥ZmMYB34/R3同源物(例如AtDIV1→23个靶标)中验证了排名靠前的TFs的调控。该NUE调控基因显著增强了XGBoost模型预测玉米和拟南芥NUE性状的能力。因此,我们结合GRN推理、机器学习和同源网络规则来识别NUE规则的管道为作物性状改进提供了一个战略框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
NUE regulons conserved model-to-crop enhance machine learning predictions of nitrogen use efficiency.
Systems biology aims to uncover gene regulatory networks (GRNs) for agricultural traits, but validating them in crops is challenging. We addressed this challenge by learning and validating model-to-crop GRN regulons governing nitrogen use efficiency (NUE). First, a fine-scale time-course nitrogen (N) response transcriptome analysis revealed a conserved temporal N response cascade in maize (Zea mays) and Arabidopsis (Arabidopsis thaliana). This data was used to infer time-based causal transcription factor (TF) target edges in N-regulated GRNs (N-GRNs). By validating 23 maize TFs in a cell-based TF-perturbation assay (TARGET), precision/recall analysis enabled us to prune high-confidence edges between ∼200 TFs/700 maize target genes. We next learned gene-to-NUE trait scores using XGBoost machine learning models trained on conserved N-responsive genes across maize and Arabidopsis accessions. By integrating NUE gene scores within our N-GRN, we ranked maize TFs based on a cumulative NUE regulon score. Regulons for top-ranked TFs were validated using the cell-based TARGET assay in maize (e.g. ZmMYB34/R3→24 targets) and the Arabidopsis ZmMYB34/R3 ortholog (e.g. AtDIV1→23 targets). The genes in this NUE regulon significantly enhanced the ability of XGBoost models to predict NUE traits in both maize and Arabidopsis. Thus, our pipeline for identifying NUE regulons that combines GRN inference, machine learning, and orthologous network regulons offers a strategic framework for crop trait improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信