高稳定金属钾阳极表面功函数诱导的高熵固体电解质界面形成。

IF 16.9 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Dr. Lili Song, Qiaoxi Yang, Dr. Yu Yao, Mengran Tan, Renke Li, Dr. Jiaying Liao, Prof. Xiaosi Zhou, Prof. Yan Yu
{"title":"高稳定金属钾阳极表面功函数诱导的高熵固体电解质界面形成。","authors":"Dr. Lili Song,&nbsp;Qiaoxi Yang,&nbsp;Dr. Yu Yao,&nbsp;Mengran Tan,&nbsp;Renke Li,&nbsp;Dr. Jiaying Liao,&nbsp;Prof. Xiaosi Zhou,&nbsp;Prof. Yan Yu","doi":"10.1002/anie.202509252","DOIUrl":null,"url":null,"abstract":"<p>The failure of the solid electrolyte interphase (SEI) layer is a key issue limiting the practical application of potassium metal batteries. Herein, a novel high-entropy SEI layer rich in inorganic components is designed and constructed via in situ electrochemical conversion of the Sn<sub>3</sub>O<sub>4</sub>/Sn<sub>2</sub>S<sub>3</sub> interfacial layer on a porous scaffold. Theoretical studies and experimental techniques reveal that the Sn<sub>3</sub>O<sub>4</sub>/Sn<sub>2</sub>S<sub>3</sub> heterostructure, with its low work function and weak Sn─O/S bond, significantly enhances reactivity with the electrolyte, thereby facilitating the in situ formation of the high-entropy SEI layer. The in situ generated high-entropy SEI exhibits low surface roughness, low surface potential, fast potassium ion transport characteristics, and excellent mechanical properties (Young's modulus of 20.08 GPa). Leveraging these advantageous properties of the high-entropy SEI, the resulting potassium metal anode achieves an excellent rate performance up to 10 mA cm<sup>−2</sup> in symmetric cells and demonstrates outstanding cycling stability for 2500 h at 0.5 mA cm<sup>−2</sup>. When paired with a perylene-3,4,9,10-tetracarboxylic dianhydride cathode, the potassium metal full battery retains 81.6% of its capacity over 1650 cycles at 10 C. This work underscores a straightforward and effective approach for the establishment of a stable interphase on metallic potassium anodes.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":"64 29","pages":""},"PeriodicalIF":16.9000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Surface Work Function-Induced High-Entropy Solid Electrolyte Interphase Formation for Highly Stable Potassium Metal Anodes\",\"authors\":\"Dr. Lili Song,&nbsp;Qiaoxi Yang,&nbsp;Dr. Yu Yao,&nbsp;Mengran Tan,&nbsp;Renke Li,&nbsp;Dr. Jiaying Liao,&nbsp;Prof. Xiaosi Zhou,&nbsp;Prof. Yan Yu\",\"doi\":\"10.1002/anie.202509252\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The failure of the solid electrolyte interphase (SEI) layer is a key issue limiting the practical application of potassium metal batteries. Herein, a novel high-entropy SEI layer rich in inorganic components is designed and constructed via in situ electrochemical conversion of the Sn<sub>3</sub>O<sub>4</sub>/Sn<sub>2</sub>S<sub>3</sub> interfacial layer on a porous scaffold. Theoretical studies and experimental techniques reveal that the Sn<sub>3</sub>O<sub>4</sub>/Sn<sub>2</sub>S<sub>3</sub> heterostructure, with its low work function and weak Sn─O/S bond, significantly enhances reactivity with the electrolyte, thereby facilitating the in situ formation of the high-entropy SEI layer. The in situ generated high-entropy SEI exhibits low surface roughness, low surface potential, fast potassium ion transport characteristics, and excellent mechanical properties (Young's modulus of 20.08 GPa). Leveraging these advantageous properties of the high-entropy SEI, the resulting potassium metal anode achieves an excellent rate performance up to 10 mA cm<sup>−2</sup> in symmetric cells and demonstrates outstanding cycling stability for 2500 h at 0.5 mA cm<sup>−2</sup>. When paired with a perylene-3,4,9,10-tetracarboxylic dianhydride cathode, the potassium metal full battery retains 81.6% of its capacity over 1650 cycles at 10 C. This work underscores a straightforward and effective approach for the establishment of a stable interphase on metallic potassium anodes.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\"64 29\",\"pages\":\"\"},\"PeriodicalIF\":16.9000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509252\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anie.202509252","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固体电解质间相(SEI)层失效是制约金属钾电池实际应用的关键问题。本文通过在多孔支架上原位电化学转化Sn3O4/Sn2S3界面层,设计并构建了一种富含无机组分的新型高熵SEI层。理论研究和实验技术表明,Sn3O4/Sn2S3异质结构具有较低的功函数和较弱的Sn-O/S键,显著增强了与电解质的反应性,从而促进了高熵SEI层的原位形成。原位生成的高熵SEI具有低表面粗糙度、低表面电位、快速钾离子传输特性和优异的力学性能(杨氏模量为20.08 GPa)。利用高熵SEI的这些优势特性,所得到的金属钾阳极在对称电池中获得了高达10 mA cm-2的优异速率性能,并在0.5 mA cm-2下表现出2500小时的出色循环稳定性。当与苝-3,4,9,10-四羧酸二酐阴极配对时,钾金属电池在10c下循环1650次后仍能保持81.6%的容量。这项工作强调了在金属钾阳极上建立稳定界面的简单有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Surface Work Function-Induced High-Entropy Solid Electrolyte Interphase Formation for Highly Stable Potassium Metal Anodes

Surface Work Function-Induced High-Entropy Solid Electrolyte Interphase Formation for Highly Stable Potassium Metal Anodes

The failure of the solid electrolyte interphase (SEI) layer is a key issue limiting the practical application of potassium metal batteries. Herein, a novel high-entropy SEI layer rich in inorganic components is designed and constructed via in situ electrochemical conversion of the Sn3O4/Sn2S3 interfacial layer on a porous scaffold. Theoretical studies and experimental techniques reveal that the Sn3O4/Sn2S3 heterostructure, with its low work function and weak Sn─O/S bond, significantly enhances reactivity with the electrolyte, thereby facilitating the in situ formation of the high-entropy SEI layer. The in situ generated high-entropy SEI exhibits low surface roughness, low surface potential, fast potassium ion transport characteristics, and excellent mechanical properties (Young's modulus of 20.08 GPa). Leveraging these advantageous properties of the high-entropy SEI, the resulting potassium metal anode achieves an excellent rate performance up to 10 mA cm−2 in symmetric cells and demonstrates outstanding cycling stability for 2500 h at 0.5 mA cm−2. When paired with a perylene-3,4,9,10-tetracarboxylic dianhydride cathode, the potassium metal full battery retains 81.6% of its capacity over 1650 cycles at 10 C. This work underscores a straightforward and effective approach for the establishment of a stable interphase on metallic potassium anodes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
26.60
自引率
6.60%
发文量
3549
审稿时长
1.5 months
期刊介绍: Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信