{"title":"CgABR1-CgFAD负调控柑桔果颈长度。","authors":"Shengjun Liu,Xuejun Bei,Yawei Li,Xiang Gao,Fusheng Wang,Xiaoyan An,Qingjiang Wu,Jinmei Huang,Lixia Lu,Hongming Liu,Chunrui Long,Yuantao Xu,Xia Wang,Qiang Xu,Shaohua Wang","doi":"10.1111/pbi.70111","DOIUrl":null,"url":null,"abstract":"Pummelo (Citrus maxima) is a fundamental species of Citrus which contributes to most of the cultivated citrus, including sweet orange, lemon and etc. The fruit neck is a structural feature of pummelo, and a long fruit neck reduces the edible rate of the fruit. In this study, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the typical short fruit neck cultivar, 'Pingshan' pummelo, and a chromosome-level genome for the typical long fruit neck cultivar, 'Shatian' pummelo. Here, we used a segment population derived from a cross between a long fruit neck cultivar ('Guanxi' pummelo) and a short fruit neck ('Pingshan' pummelo) cultivar to map the determinant controlling the fruit neck length. We identified a strong peak on chromosome 1 within the 27.5-30.5 Mb physical region and found a 52 bp deletion linked with the fruit neck length. Moreover, by combining RNA sequencing data of the fruit neck development and variation analysis, we identified two genes, one encodes ethylene-responsive transcription factor (CgABR1) and the other encodes FAD-dependent urate hydroxylase (CgFAD). Genetic transformation confirmed that overexpression of CgABR1 and CgFAD can inhibit fruit neck length. DNA affinity purification sequencing, electrophoretic mobility shift assays and dual-LUC reporter assays demonstrated that CgABR1 can activate the expression of CgFAD by directly binding to its promoter. In summary, we assembled a T2T gap-free genome for pummelo and identified the key genes for fruit neck length in citrus, offering an important resource and new genes for citrus genetic improvement and breeding programs.","PeriodicalId":221,"journal":{"name":"Plant Biotechnology Journal","volume":"30 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CgABR1-CgFAD negatively regulates the fruit neck length in citrus.\",\"authors\":\"Shengjun Liu,Xuejun Bei,Yawei Li,Xiang Gao,Fusheng Wang,Xiaoyan An,Qingjiang Wu,Jinmei Huang,Lixia Lu,Hongming Liu,Chunrui Long,Yuantao Xu,Xia Wang,Qiang Xu,Shaohua Wang\",\"doi\":\"10.1111/pbi.70111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Pummelo (Citrus maxima) is a fundamental species of Citrus which contributes to most of the cultivated citrus, including sweet orange, lemon and etc. The fruit neck is a structural feature of pummelo, and a long fruit neck reduces the edible rate of the fruit. In this study, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the typical short fruit neck cultivar, 'Pingshan' pummelo, and a chromosome-level genome for the typical long fruit neck cultivar, 'Shatian' pummelo. Here, we used a segment population derived from a cross between a long fruit neck cultivar ('Guanxi' pummelo) and a short fruit neck ('Pingshan' pummelo) cultivar to map the determinant controlling the fruit neck length. We identified a strong peak on chromosome 1 within the 27.5-30.5 Mb physical region and found a 52 bp deletion linked with the fruit neck length. Moreover, by combining RNA sequencing data of the fruit neck development and variation analysis, we identified two genes, one encodes ethylene-responsive transcription factor (CgABR1) and the other encodes FAD-dependent urate hydroxylase (CgFAD). Genetic transformation confirmed that overexpression of CgABR1 and CgFAD can inhibit fruit neck length. DNA affinity purification sequencing, electrophoretic mobility shift assays and dual-LUC reporter assays demonstrated that CgABR1 can activate the expression of CgFAD by directly binding to its promoter. In summary, we assembled a T2T gap-free genome for pummelo and identified the key genes for fruit neck length in citrus, offering an important resource and new genes for citrus genetic improvement and breeding programs.\",\"PeriodicalId\":221,\"journal\":{\"name\":\"Plant Biotechnology Journal\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1111/pbi.70111\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology Journal","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1111/pbi.70111","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
CgABR1-CgFAD negatively regulates the fruit neck length in citrus.
Pummelo (Citrus maxima) is a fundamental species of Citrus which contributes to most of the cultivated citrus, including sweet orange, lemon and etc. The fruit neck is a structural feature of pummelo, and a long fruit neck reduces the edible rate of the fruit. In this study, we assembled a telomere-to-telomere (T2T) gap-free reference genome for the typical short fruit neck cultivar, 'Pingshan' pummelo, and a chromosome-level genome for the typical long fruit neck cultivar, 'Shatian' pummelo. Here, we used a segment population derived from a cross between a long fruit neck cultivar ('Guanxi' pummelo) and a short fruit neck ('Pingshan' pummelo) cultivar to map the determinant controlling the fruit neck length. We identified a strong peak on chromosome 1 within the 27.5-30.5 Mb physical region and found a 52 bp deletion linked with the fruit neck length. Moreover, by combining RNA sequencing data of the fruit neck development and variation analysis, we identified two genes, one encodes ethylene-responsive transcription factor (CgABR1) and the other encodes FAD-dependent urate hydroxylase (CgFAD). Genetic transformation confirmed that overexpression of CgABR1 and CgFAD can inhibit fruit neck length. DNA affinity purification sequencing, electrophoretic mobility shift assays and dual-LUC reporter assays demonstrated that CgABR1 can activate the expression of CgFAD by directly binding to its promoter. In summary, we assembled a T2T gap-free genome for pummelo and identified the key genes for fruit neck length in citrus, offering an important resource and new genes for citrus genetic improvement and breeding programs.
期刊介绍:
Plant Biotechnology Journal aspires to publish original research and insightful reviews of high impact, authored by prominent researchers in applied plant science. The journal places a special emphasis on molecular plant sciences and their practical applications through plant biotechnology. Our goal is to establish a platform for showcasing significant advances in the field, encompassing curiosity-driven studies with potential applications, strategic research in plant biotechnology, scientific analysis of crucial issues for the beneficial utilization of plant sciences, and assessments of the performance of plant biotechnology products in practical applications.