用基于伦理的举措减轻机器学习模型中的偏见:败血症的案例。

John D Banja,Yao Xie,Jeffrey R Smith,Shaheen Rana,Andre L Holder
{"title":"用基于伦理的举措减轻机器学习模型中的偏见:败血症的案例。","authors":"John D Banja,Yao Xie,Jeffrey R Smith,Shaheen Rana,Andre L Holder","doi":"10.1080/15265161.2025.2497971","DOIUrl":null,"url":null,"abstract":"This paper discusses ethics-based strategies for mitigating bias in machine learning models used to predict sepsis onset. The first part discusses how various kinds of bias and their potential synergies can reduce predictive accuracy, especially as those biases derive from social determinants of health (SDOHs) and from the design and construction of the predictive model. The second part of the essay discusses how certain ethically-based strategies might mitigate the potential for disparate or unfair treatment produced by these models, not only as they might apply to sepsis but to any syndrome that witnesses the impact of adverse SDOHs on socioeconomically disadvantaged or marginalized populations.","PeriodicalId":501008,"journal":{"name":"The American Journal of Bioethics","volume":"3 1","pages":"1-14"},"PeriodicalIF":0.0000,"publicationDate":"2025-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mitigating Bias in Machine Learning Models with Ethics-Based Initiatives: The Case of Sepsis.\",\"authors\":\"John D Banja,Yao Xie,Jeffrey R Smith,Shaheen Rana,Andre L Holder\",\"doi\":\"10.1080/15265161.2025.2497971\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper discusses ethics-based strategies for mitigating bias in machine learning models used to predict sepsis onset. The first part discusses how various kinds of bias and their potential synergies can reduce predictive accuracy, especially as those biases derive from social determinants of health (SDOHs) and from the design and construction of the predictive model. The second part of the essay discusses how certain ethically-based strategies might mitigate the potential for disparate or unfair treatment produced by these models, not only as they might apply to sepsis but to any syndrome that witnesses the impact of adverse SDOHs on socioeconomically disadvantaged or marginalized populations.\",\"PeriodicalId\":501008,\"journal\":{\"name\":\"The American Journal of Bioethics\",\"volume\":\"3 1\",\"pages\":\"1-14\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The American Journal of Bioethics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/15265161.2025.2497971\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The American Journal of Bioethics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/15265161.2025.2497971","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文讨论了基于伦理的策略,以减轻用于预测败血症发作的机器学习模型中的偏见。第一部分讨论了各种偏见及其潜在的协同作用如何降低预测准确性,特别是当这些偏见来自健康的社会决定因素(SDOHs)和预测模型的设计和构建时。本文的第二部分讨论了某些基于道德的策略如何减轻这些模型产生的不同或不公平治疗的可能性,不仅因为它们可能适用于败血症,而且适用于任何综合症,这些综合症可以证明不利的SDOHs对社会经济上处于不利地位或边缘化人群的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mitigating Bias in Machine Learning Models with Ethics-Based Initiatives: The Case of Sepsis.
This paper discusses ethics-based strategies for mitigating bias in machine learning models used to predict sepsis onset. The first part discusses how various kinds of bias and their potential synergies can reduce predictive accuracy, especially as those biases derive from social determinants of health (SDOHs) and from the design and construction of the predictive model. The second part of the essay discusses how certain ethically-based strategies might mitigate the potential for disparate or unfair treatment produced by these models, not only as they might apply to sepsis but to any syndrome that witnesses the impact of adverse SDOHs on socioeconomically disadvantaged or marginalized populations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信