基于大语言模型的保险理赔文本分析

IF 2.1 3区 经济学 Q2 BUSINESS, FINANCE
Dongchen Li, Zhuo Jin, Linyi Qian, Hailiang Yang
{"title":"基于大语言模型的保险理赔文本分析","authors":"Dongchen Li,&nbsp;Zhuo Jin,&nbsp;Linyi Qian,&nbsp;Hailiang Yang","doi":"10.1111/jori.70004","DOIUrl":null,"url":null,"abstract":"<p>This study proposes a comprehensive and general framework for examining discrepancies in textual content using large language models (LLMs), broadening application scenarios in the insurtech and risk management fields, and conducting empirical research based on actual needs and real-world data. Our framework integrates OpenAI's interface to embed texts and project them into external categories while utilizing distance metrics to evaluate discrepancies. To identify significant disparities, we design prompts to analyze three types of relationships: identical information, logical relationships and potential relationships. Our empirical analysis shows that 22.1% of samples exhibit substantial semantic discrepancies, and 38.1% of the samples with significant differences contain at least one of the identified relationships. The average processing time for each sample does not exceed 4 s, and all processes can be adjusted based on actual needs. Backtesting results and comparisons with traditional NLP methods further demonstrate that our proposed method is both effective and robust.</p>","PeriodicalId":51440,"journal":{"name":"Journal of Risk and Insurance","volume":"92 2","pages":"505-535"},"PeriodicalIF":2.1000,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Textual analysis of insurance claims with large language models\",\"authors\":\"Dongchen Li,&nbsp;Zhuo Jin,&nbsp;Linyi Qian,&nbsp;Hailiang Yang\",\"doi\":\"10.1111/jori.70004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study proposes a comprehensive and general framework for examining discrepancies in textual content using large language models (LLMs), broadening application scenarios in the insurtech and risk management fields, and conducting empirical research based on actual needs and real-world data. Our framework integrates OpenAI's interface to embed texts and project them into external categories while utilizing distance metrics to evaluate discrepancies. To identify significant disparities, we design prompts to analyze three types of relationships: identical information, logical relationships and potential relationships. Our empirical analysis shows that 22.1% of samples exhibit substantial semantic discrepancies, and 38.1% of the samples with significant differences contain at least one of the identified relationships. The average processing time for each sample does not exceed 4 s, and all processes can be adjusted based on actual needs. Backtesting results and comparisons with traditional NLP methods further demonstrate that our proposed method is both effective and robust.</p>\",\"PeriodicalId\":51440,\"journal\":{\"name\":\"Journal of Risk and Insurance\",\"volume\":\"92 2\",\"pages\":\"505-535\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Risk and Insurance\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jori.70004\",\"RegionNum\":3,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Risk and Insurance","FirstCategoryId":"96","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jori.70004","RegionNum":3,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一个全面、通用的框架,利用大型语言模型(llm)来检验文本内容的差异,拓宽了在保险科技和风险管理领域的应用场景,并基于实际需求和现实数据进行实证研究。我们的框架集成了OpenAI的接口来嵌入文本并将其投影到外部类别中,同时利用距离度量来评估差异。为了识别显著差异,我们设计了提示来分析三种类型的关系:相同信息、逻辑关系和潜在关系。我们的实证分析表明,22.1%的样本存在显著的语义差异,38.1%的显著差异样本包含至少一种已识别的关系。每个样品平均处理时间不超过4 s,所有工序可根据实际需要进行调整。回溯测试结果以及与传统NLP方法的比较进一步证明了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Textual analysis of insurance claims with large language models

This study proposes a comprehensive and general framework for examining discrepancies in textual content using large language models (LLMs), broadening application scenarios in the insurtech and risk management fields, and conducting empirical research based on actual needs and real-world data. Our framework integrates OpenAI's interface to embed texts and project them into external categories while utilizing distance metrics to evaluate discrepancies. To identify significant disparities, we design prompts to analyze three types of relationships: identical information, logical relationships and potential relationships. Our empirical analysis shows that 22.1% of samples exhibit substantial semantic discrepancies, and 38.1% of the samples with significant differences contain at least one of the identified relationships. The average processing time for each sample does not exceed 4 s, and all processes can be adjusted based on actual needs. Backtesting results and comparisons with traditional NLP methods further demonstrate that our proposed method is both effective and robust.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
3.50
自引率
15.80%
发文量
43
期刊介绍: The Journal of Risk and Insurance (JRI) is the premier outlet for theoretical and empirical research on the topics of insurance economics and risk management. Research in the JRI informs practice, policy-making, and regulation in insurance markets as well as corporate and household risk management. JRI is the flagship journal for the American Risk and Insurance Association, and is currently indexed by the American Economic Association’s Economic Literature Index, RePEc, the Social Sciences Citation Index, and others. Issues of the Journal of Risk and Insurance, from volume one to volume 82 (2015), are available online through JSTOR . Recent issues of JRI are available through Wiley Online Library. In addition to the research areas of traditional strength for the JRI, the editorial team highlights below specific areas for special focus in the near term, due to their current relevance for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信