基于机器学习优化的含斜棱柱障碍物方形腔内自由对流换热有限元数值模拟

IF 2.6 Q2 THERMODYNAMICS
Heat Transfer Pub Date : 2025-02-26 DOI:10.1002/htj.23315
Perepi Rajarajeswari, Thilagavathi Arasukumar, O. Anwar Bég, Tasveer A. Bég, S. Kuharat, P. Bala Anki Reddy, V. Ramachandra Prasad
{"title":"基于机器学习优化的含斜棱柱障碍物方形腔内自由对流换热有限元数值模拟","authors":"Perepi Rajarajeswari,&nbsp;Thilagavathi Arasukumar,&nbsp;O. Anwar Bég,&nbsp;Tasveer A. Bég,&nbsp;S. Kuharat,&nbsp;P. Bala Anki Reddy,&nbsp;V. Ramachandra Prasad","doi":"10.1002/htj.23315","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The present work describes a numerical simulation of free convection heat transfer inside a square cavity containing a prismatic obstacle at various angles of inclination. The nondimensional governing equations are discretized by the finite element method and solved in the commercial software “COMSOL Multiphysics 6.1” with appropriate boundary conditions. The effect of prominent parameters on streamline, isotherm contours, and local Nusselt number profiles are depicted graphically. The control parameters are the Prandtl number and Rayleigh number (10<sup>3</sup> ≤ <i>Ra</i> ≤ 10<sup>6</sup>). The study considers air as the circulating fluid with the Prandtl number, <i>Pr</i> = 0.71. The computations are conducted for the prismatic shape at four different orientations of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mn>0</mn>\n \n <mo>∘</mo>\n </msup>\n \n <mo>,</mo>\n \n <mn>3</mn>\n \n <msup>\n <mn>0</mn>\n \n <mo>∘</mo>\n </msup>\n \n <mo>,</mo>\n \n <mn>4</mn>\n \n <msup>\n <mn>5</mn>\n \n <mo>∘</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>, and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>6</mn>\n \n <msup>\n <mn>0</mn>\n \n <mo>∘</mo>\n </msup>\n </mrow>\n </mrow>\n </semantics></math>. The inclination angle of the prismatic obstacle is observed to exert a significant role in the distribution of heat and momentum inside the square cavity. Furthermore, neural network approaches are used for optimizing the thermal performance of the system, via Bayesian regularization machine learning analysis and Levenberg–Marquardt algorithms. The study finds applications in solar collectors, fuel cells, and so forth.</p>\n </div>","PeriodicalId":44939,"journal":{"name":"Heat Transfer","volume":"54 4","pages":"2675-2690"},"PeriodicalIF":2.6000,"publicationDate":"2025-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite Element Numerical Simulation of Free Convection Heat Transfer in a Square Cavity Containing an Inclined Prismatic Obstacle With Machine Learning Optimization\",\"authors\":\"Perepi Rajarajeswari,&nbsp;Thilagavathi Arasukumar,&nbsp;O. Anwar Bég,&nbsp;Tasveer A. Bég,&nbsp;S. Kuharat,&nbsp;P. Bala Anki Reddy,&nbsp;V. Ramachandra Prasad\",\"doi\":\"10.1002/htj.23315\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The present work describes a numerical simulation of free convection heat transfer inside a square cavity containing a prismatic obstacle at various angles of inclination. The nondimensional governing equations are discretized by the finite element method and solved in the commercial software “COMSOL Multiphysics 6.1” with appropriate boundary conditions. The effect of prominent parameters on streamline, isotherm contours, and local Nusselt number profiles are depicted graphically. The control parameters are the Prandtl number and Rayleigh number (10<sup>3</sup> ≤ <i>Ra</i> ≤ 10<sup>6</sup>). The study considers air as the circulating fluid with the Prandtl number, <i>Pr</i> = 0.71. The computations are conducted for the prismatic shape at four different orientations of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mn>0</mn>\\n \\n <mo>∘</mo>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n \\n <msup>\\n <mn>0</mn>\\n \\n <mo>∘</mo>\\n </msup>\\n \\n <mo>,</mo>\\n \\n <mn>4</mn>\\n \\n <msup>\\n <mn>5</mn>\\n \\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>, and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>6</mn>\\n \\n <msup>\\n <mn>0</mn>\\n \\n <mo>∘</mo>\\n </msup>\\n </mrow>\\n </mrow>\\n </semantics></math>. The inclination angle of the prismatic obstacle is observed to exert a significant role in the distribution of heat and momentum inside the square cavity. Furthermore, neural network approaches are used for optimizing the thermal performance of the system, via Bayesian regularization machine learning analysis and Levenberg–Marquardt algorithms. The study finds applications in solar collectors, fuel cells, and so forth.</p>\\n </div>\",\"PeriodicalId\":44939,\"journal\":{\"name\":\"Heat Transfer\",\"volume\":\"54 4\",\"pages\":\"2675-2690\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Heat Transfer\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/htj.23315\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"THERMODYNAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Heat Transfer","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/htj.23315","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"THERMODYNAMICS","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一个包含不同倾角棱柱状障碍物的方形腔内自由对流换热的数值模拟。采用有限元法对无量纲控制方程进行离散,并在商业软件COMSOL Multiphysics 6.1中采用适当的边界条件进行求解。突出参数对流线、等温线轮廓和局部努塞尔数轮廓的影响用图形表示。控制参数为普朗特数和瑞利数(103≤Ra≤106)。本研究将空气作为循环流体,其普朗特数Pr = 0.71。计算是在四种不同的0°方向下的棱柱形,3 0°,4 5°,60°。观察到棱柱状障碍物的倾角对方形腔内热量和动量的分布起着重要的作用。此外,通过贝叶斯正则化机器学习分析和Levenberg-Marquardt算法,使用神经网络方法来优化系统的热性能。这项研究发现了太阳能集热器、燃料电池等方面的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite Element Numerical Simulation of Free Convection Heat Transfer in a Square Cavity Containing an Inclined Prismatic Obstacle With Machine Learning Optimization

The present work describes a numerical simulation of free convection heat transfer inside a square cavity containing a prismatic obstacle at various angles of inclination. The nondimensional governing equations are discretized by the finite element method and solved in the commercial software “COMSOL Multiphysics 6.1” with appropriate boundary conditions. The effect of prominent parameters on streamline, isotherm contours, and local Nusselt number profiles are depicted graphically. The control parameters are the Prandtl number and Rayleigh number (103 ≤ Ra ≤ 106). The study considers air as the circulating fluid with the Prandtl number, Pr = 0.71. The computations are conducted for the prismatic shape at four different orientations of 0 , 3 0 , 4 5 , and 6 0 . The inclination angle of the prismatic obstacle is observed to exert a significant role in the distribution of heat and momentum inside the square cavity. Furthermore, neural network approaches are used for optimizing the thermal performance of the system, via Bayesian regularization machine learning analysis and Levenberg–Marquardt algorithms. The study finds applications in solar collectors, fuel cells, and so forth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Heat Transfer
Heat Transfer THERMODYNAMICS-
CiteScore
6.30
自引率
19.40%
发文量
342
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信