Leqin Fang, Weixiong Zeng, Shuqiong Zheng, Shixu Du, Hangyi Yang, Xue Luo, Shufei Zeng, Zhiting Huang, Weiguo Chen, Bin Zhang
{"title":"使用加速计识别短期失眠症临床显著焦虑的机器学习模型","authors":"Leqin Fang, Weixiong Zeng, Shuqiong Zheng, Shixu Du, Hangyi Yang, Xue Luo, Shufei Zeng, Zhiting Huang, Weiguo Chen, Bin Zhang","doi":"10.1155/da/3082856","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Clinically significant anxiety (CSA) is common in individuals with short-term insomnia. This study aims to explore the relationship between CSA and the subjective and objective parameters of sleep in patients with short-term insomnia and construct machine learning (ML) models to determine the utility of accelerometer features in identifying significant anxiety. A total of 205 short-term insomnia participants from China were assigned to the group with CSA (<i>N</i> = 33) or the group without CSA (<i>N</i> = 172). Interaction analysis based on linear regression was used to estimate the possible interactive effect of accelerometer features between CSA and sleep problems. Four feature sets and eight algorithms were used to construct ML models, with Shapley Additive exPlanations (SHAP) values used to visualize feature importance and influence processes. CSA in patients with short-term insomnia leads to more severe subjective sleep problems, and accelerometer-measured features warrant further attention for the identification of interactive factors. A significant interaction effect was found between anxiety symptoms and longer duration of physical activity on insomnia severity (<i>P</i><sub>interaction</sub> < 0.05). Anxiety symptoms and interdaily stability had an interactive association with sleep hygiene behaviors (<i>P</i><sub>interaction</sub> < 0.01). ML can process and analyze complex accelerometer features to identify CSA in patients with short-term insomnia. Compared with other feature sets and algorithms, the XGBoost model with accelerometer-measured features on weekdays more effectively identified CSA with area under the curve (AUC) value of 0.777. SHAP analysis results indicated that circadian rhythm features had significant contributions. Decision plots based on SHAP were applied to visualize the personalized risk factors for each patient and provide clinicians with more easily understandable and practical explanation methods that enhance clinical decision-making.</p>\n <p><b>Trial Registration:</b> Chinese Clinical Trial Registry identifier: ChiCTR2200062910</p>\n </div>","PeriodicalId":55179,"journal":{"name":"Depression and Anxiety","volume":"2025 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/da/3082856","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Models to Identify Clinically Significant Anxiety in Short-Term Insomnia Using Accelerometers\",\"authors\":\"Leqin Fang, Weixiong Zeng, Shuqiong Zheng, Shixu Du, Hangyi Yang, Xue Luo, Shufei Zeng, Zhiting Huang, Weiguo Chen, Bin Zhang\",\"doi\":\"10.1155/da/3082856\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Clinically significant anxiety (CSA) is common in individuals with short-term insomnia. This study aims to explore the relationship between CSA and the subjective and objective parameters of sleep in patients with short-term insomnia and construct machine learning (ML) models to determine the utility of accelerometer features in identifying significant anxiety. A total of 205 short-term insomnia participants from China were assigned to the group with CSA (<i>N</i> = 33) or the group without CSA (<i>N</i> = 172). Interaction analysis based on linear regression was used to estimate the possible interactive effect of accelerometer features between CSA and sleep problems. Four feature sets and eight algorithms were used to construct ML models, with Shapley Additive exPlanations (SHAP) values used to visualize feature importance and influence processes. CSA in patients with short-term insomnia leads to more severe subjective sleep problems, and accelerometer-measured features warrant further attention for the identification of interactive factors. A significant interaction effect was found between anxiety symptoms and longer duration of physical activity on insomnia severity (<i>P</i><sub>interaction</sub> < 0.05). Anxiety symptoms and interdaily stability had an interactive association with sleep hygiene behaviors (<i>P</i><sub>interaction</sub> < 0.01). ML can process and analyze complex accelerometer features to identify CSA in patients with short-term insomnia. Compared with other feature sets and algorithms, the XGBoost model with accelerometer-measured features on weekdays more effectively identified CSA with area under the curve (AUC) value of 0.777. SHAP analysis results indicated that circadian rhythm features had significant contributions. Decision plots based on SHAP were applied to visualize the personalized risk factors for each patient and provide clinicians with more easily understandable and practical explanation methods that enhance clinical decision-making.</p>\\n <p><b>Trial Registration:</b> Chinese Clinical Trial Registry identifier: ChiCTR2200062910</p>\\n </div>\",\"PeriodicalId\":55179,\"journal\":{\"name\":\"Depression and Anxiety\",\"volume\":\"2025 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/da/3082856\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Depression and Anxiety\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/da/3082856\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PSYCHIATRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Depression and Anxiety","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/da/3082856","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
Machine Learning Models to Identify Clinically Significant Anxiety in Short-Term Insomnia Using Accelerometers
Clinically significant anxiety (CSA) is common in individuals with short-term insomnia. This study aims to explore the relationship between CSA and the subjective and objective parameters of sleep in patients with short-term insomnia and construct machine learning (ML) models to determine the utility of accelerometer features in identifying significant anxiety. A total of 205 short-term insomnia participants from China were assigned to the group with CSA (N = 33) or the group without CSA (N = 172). Interaction analysis based on linear regression was used to estimate the possible interactive effect of accelerometer features between CSA and sleep problems. Four feature sets and eight algorithms were used to construct ML models, with Shapley Additive exPlanations (SHAP) values used to visualize feature importance and influence processes. CSA in patients with short-term insomnia leads to more severe subjective sleep problems, and accelerometer-measured features warrant further attention for the identification of interactive factors. A significant interaction effect was found between anxiety symptoms and longer duration of physical activity on insomnia severity (Pinteraction < 0.05). Anxiety symptoms and interdaily stability had an interactive association with sleep hygiene behaviors (Pinteraction < 0.01). ML can process and analyze complex accelerometer features to identify CSA in patients with short-term insomnia. Compared with other feature sets and algorithms, the XGBoost model with accelerometer-measured features on weekdays more effectively identified CSA with area under the curve (AUC) value of 0.777. SHAP analysis results indicated that circadian rhythm features had significant contributions. Decision plots based on SHAP were applied to visualize the personalized risk factors for each patient and provide clinicians with more easily understandable and practical explanation methods that enhance clinical decision-making.
Trial Registration: Chinese Clinical Trial Registry identifier: ChiCTR2200062910
期刊介绍:
Depression and Anxiety is a scientific journal that focuses on the study of mood and anxiety disorders, as well as related phenomena in humans. The journal is dedicated to publishing high-quality research and review articles that contribute to the understanding and treatment of these conditions. The journal places a particular emphasis on articles that contribute to the clinical evaluation and care of individuals affected by mood and anxiety disorders. It prioritizes the publication of treatment-related research and review papers, as well as those that present novel findings that can directly impact clinical practice. The journal's goal is to advance the field by disseminating knowledge that can lead to better diagnosis, treatment, and management of these disorders, ultimately improving the quality of life for those who suffer from them.