河岸带非均质性影响陆水界面生物可降解溶解有机碳的数量和归宿

IF 3.7 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES
Melissa Reidy, Martin Berggren, Anna Lupon, Hjalmar Laudon, Ryan A. Sponseller
{"title":"河岸带非均质性影响陆水界面生物可降解溶解有机碳的数量和归宿","authors":"Melissa Reidy,&nbsp;Martin Berggren,&nbsp;Anna Lupon,&nbsp;Hjalmar Laudon,&nbsp;Ryan A. Sponseller","doi":"10.1029/2024JG008471","DOIUrl":null,"url":null,"abstract":"<p>The transport of biodegradable dissolved organic carbon (bDOC) across land-water boundaries is central to supporting the ecological and biogeochemical functioning of freshwater ecosystems. Yet, we know little about how the generation and supply of terrestrial bDOC to streams and lakes is regulated by the physical, biological, and hydrological properties of the riparian interface. Here, we assessed how terrestrial, groundwater, and aquatic bDOC differ along flowpaths connecting riparian soils to a headwater boreal stream. We further tested how bDOC generation and supply differs among interfaces with distinct hydrogeomorphologies, as reflected by differences in soil properties, groundwater dynamics, and hydrological connectivity to the stream. We found that bDOC quantity declined sharply from terrestrial sources, to groundwater, to aquatic systems, and that these differences were associated with changes in the optical and chemical properties of the dissolved organic matter pool. However, bDOC generation and potential transport in groundwater varied across site types and reflected local differences in soil organic matter storage, depth to groundwater, and soil microbial community activity. Interface zones with organic-rich soils but weak hydrological connections had a large capacity to produce bDOC, but likely only laterally contributed organic resources during floods. By contrast, sites with stronger lateral hydrological connectivity served as persistent conduits for organic resources generated further upslope, even if the capacity to generate bDOC locally was weak. Overall, our results illustrate how hydrogeomorphic heterogeneity at the land-water interface can add spatial and temporal complexity to the generation and transfer of bDOC from soils to the inland water continuum.</p>","PeriodicalId":16003,"journal":{"name":"Journal of Geophysical Research: Biogeosciences","volume":"130 5","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008471","citationCount":"0","resultStr":"{\"title\":\"Riparian Zone Heterogeneity Influences the Amount and Fate of Biodegradable Dissolved Organic Carbon at the Land-Water Interface\",\"authors\":\"Melissa Reidy,&nbsp;Martin Berggren,&nbsp;Anna Lupon,&nbsp;Hjalmar Laudon,&nbsp;Ryan A. Sponseller\",\"doi\":\"10.1029/2024JG008471\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The transport of biodegradable dissolved organic carbon (bDOC) across land-water boundaries is central to supporting the ecological and biogeochemical functioning of freshwater ecosystems. Yet, we know little about how the generation and supply of terrestrial bDOC to streams and lakes is regulated by the physical, biological, and hydrological properties of the riparian interface. Here, we assessed how terrestrial, groundwater, and aquatic bDOC differ along flowpaths connecting riparian soils to a headwater boreal stream. We further tested how bDOC generation and supply differs among interfaces with distinct hydrogeomorphologies, as reflected by differences in soil properties, groundwater dynamics, and hydrological connectivity to the stream. We found that bDOC quantity declined sharply from terrestrial sources, to groundwater, to aquatic systems, and that these differences were associated with changes in the optical and chemical properties of the dissolved organic matter pool. However, bDOC generation and potential transport in groundwater varied across site types and reflected local differences in soil organic matter storage, depth to groundwater, and soil microbial community activity. Interface zones with organic-rich soils but weak hydrological connections had a large capacity to produce bDOC, but likely only laterally contributed organic resources during floods. By contrast, sites with stronger lateral hydrological connectivity served as persistent conduits for organic resources generated further upslope, even if the capacity to generate bDOC locally was weak. Overall, our results illustrate how hydrogeomorphic heterogeneity at the land-water interface can add spatial and temporal complexity to the generation and transfer of bDOC from soils to the inland water continuum.</p>\",\"PeriodicalId\":16003,\"journal\":{\"name\":\"Journal of Geophysical Research: Biogeosciences\",\"volume\":\"130 5\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024JG008471\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Geophysical Research: Biogeosciences\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008471\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research: Biogeosciences","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024JG008471","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

生物可降解溶解有机碳(bDOC)跨越陆地-水边界的运输对于支持淡水生态系统的生态和生物地球化学功能至关重要。然而,我们对河岸界面的物理、生物和水文特性如何调节陆地bDOC向河流和湖泊的产生和供应知之甚少。在这里,我们评估了陆地、地下水和水生生物的bDOC在连接河岸土壤和源头北方河流的流动路径上的差异。我们进一步测试了具有不同水文地貌的界面中bDOC的生成和供应的差异,这反映在土壤性质、地下水动力学和与河流的水文连通性的差异上。从陆源到地下水,再到水生系统,bDOC数量急剧下降,这些差异与溶解有机质池的光学和化学性质的变化有关。然而,地下水中bDOC的生成和潜在输运因场地类型而异,反映了土壤有机质储量、地下水深度和土壤微生物群落活动的局部差异。富有机质土壤但水文联系弱的界面区产生bDOC的能力较大,但可能仅在洪水期间侧向贡献有机资源。相比之下,横向水文连通性较强的地点是进一步上坡产生有机资源的持续管道,即使当地产生bDOC的能力较弱。总的来说,我们的研究结果说明了陆水界面的水文地貌异质性如何增加了bDOC从土壤到内陆水连续体的产生和转移的时空复杂性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Riparian Zone Heterogeneity Influences the Amount and Fate of Biodegradable Dissolved Organic Carbon at the Land-Water Interface

The transport of biodegradable dissolved organic carbon (bDOC) across land-water boundaries is central to supporting the ecological and biogeochemical functioning of freshwater ecosystems. Yet, we know little about how the generation and supply of terrestrial bDOC to streams and lakes is regulated by the physical, biological, and hydrological properties of the riparian interface. Here, we assessed how terrestrial, groundwater, and aquatic bDOC differ along flowpaths connecting riparian soils to a headwater boreal stream. We further tested how bDOC generation and supply differs among interfaces with distinct hydrogeomorphologies, as reflected by differences in soil properties, groundwater dynamics, and hydrological connectivity to the stream. We found that bDOC quantity declined sharply from terrestrial sources, to groundwater, to aquatic systems, and that these differences were associated with changes in the optical and chemical properties of the dissolved organic matter pool. However, bDOC generation and potential transport in groundwater varied across site types and reflected local differences in soil organic matter storage, depth to groundwater, and soil microbial community activity. Interface zones with organic-rich soils but weak hydrological connections had a large capacity to produce bDOC, but likely only laterally contributed organic resources during floods. By contrast, sites with stronger lateral hydrological connectivity served as persistent conduits for organic resources generated further upslope, even if the capacity to generate bDOC locally was weak. Overall, our results illustrate how hydrogeomorphic heterogeneity at the land-water interface can add spatial and temporal complexity to the generation and transfer of bDOC from soils to the inland water continuum.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Geophysical Research: Biogeosciences
Journal of Geophysical Research: Biogeosciences Earth and Planetary Sciences-Paleontology
CiteScore
6.60
自引率
5.40%
发文量
242
期刊介绍: JGR-Biogeosciences focuses on biogeosciences of the Earth system in the past, present, and future and the extension of this research to planetary studies. The emerging field of biogeosciences spans the intellectual interface between biology and the geosciences and attempts to understand the functions of the Earth system across multiple spatial and temporal scales. Studies in biogeosciences may use multiple lines of evidence drawn from diverse fields to gain a holistic understanding of terrestrial, freshwater, and marine ecosystems and extreme environments. Specific topics within the scope of the section include process-based theoretical, experimental, and field studies of biogeochemistry, biogeophysics, atmosphere-, land-, and ocean-ecosystem interactions, biomineralization, life in extreme environments, astrobiology, microbial processes, geomicrobiology, and evolutionary geobiology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信