无冲突着色的极值结果

IF 0.9 3区 数学 Q2 MATHEMATICS
Sriram Bhyravarapu, Shiwali Gupta, Subrahmanyam Kalyanasundaram, Rogers Mathew
{"title":"无冲突着色的极值结果","authors":"Sriram Bhyravarapu,&nbsp;Shiwali Gupta,&nbsp;Subrahmanyam Kalyanasundaram,&nbsp;Rogers Mathew","doi":"10.1002/jgt.23223","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n </semantics></math> denotes the maximum degree of the graph.\n\n </p><ul>\n \n <li>\n <p>We show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo> </mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Dębski and Przybyło had shown that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a line graph, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. As an open question, they had asked if their result could be extended to claw-free (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free) graphs, which is a superclass of line graphs. Since <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, our result answers their open question. It is known that there exist separate families of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mtext>.</mtext>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n \n <li>\n <p>For a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, we show that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>k</mi>\n \n <mo> </mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. This bound is asymptotically tight for some values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> since there are graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n \n <li>\n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math> be an integer. We define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> as follows:\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>:</mo>\n \n <mi>G</mi>\n <mspace></mspace>\n <mspace></mspace>\n \n <mtext>is a graph with minimum degree at least</mtext>\n <mspace></mspace>\n <mspace></mspace>\n \n <mi>δ</mi>\n \n <mo>}</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math></span><span></span></div>\n \n \n <p>It is easy to see that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>δ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>&lt;</mo>\n \n <mi>δ</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> be a positive constant. It was shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. In this paper, we show (i) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mfrac>\n <mrow>\n <mi>c</mi>\n \n <mi>Δ</mi>\n </mrow>\n \n <mrow>\n <msup>\n <mi>ln</mi>\n \n <mi>ϵ</mi>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n </mrow>\n </mfrac>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </semantics></math> is a constant such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>ϵ</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and (ii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <msup>\n <mi>Δ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </semantics></math> is a constant such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>&lt;</mo>\n \n <mi>ϵ</mi>\n \n <mo>&lt;</mo>\n \n <mn>0.003</mn>\n </mrow>\n </mrow>\n </semantics></math>. Together with the known upper bound <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, this implies that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <msup>\n <mi>Δ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n </ul></div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"259-268"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Results on Conflict-Free Coloring\",\"authors\":\"Sriram Bhyravarapu,&nbsp;Shiwali Gupta,&nbsp;Subrahmanyam Kalyanasundaram,&nbsp;Rogers Mathew\",\"doi\":\"10.1002/jgt.23223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> denotes the maximum degree of the graph.\\n\\n </p><ul>\\n \\n <li>\\n <p>We show that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo> </mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Dębski and Przybyło had shown that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a line graph, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. As an open question, they had asked if their result could be extended to claw-free (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free) graphs, which is a superclass of line graphs. Since <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, our result answers their open question. It is known that there exist separate families of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mtext>.</mtext>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </li>\\n \\n <li>\\n <p>For a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices, we show that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>k</mi>\\n \\n <mo> </mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>n</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. This bound is asymptotically tight for some values of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> since there are graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>n</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </li>\\n \\n <li>\\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> be an integer. We define <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> as follows:\\n\\n </p><div><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>:</mo>\\n \\n <mi>G</mi>\\n <mspace></mspace>\\n <mspace></mspace>\\n \\n <mtext>is a graph with minimum degree at least</mtext>\\n <mspace></mspace>\\n <mspace></mspace>\\n \\n <mi>δ</mi>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>.</mo>\\n </mrow>\\n </mrow>\\n </semantics></math></span><span></span></div>\\n \\n \\n <p>It is easy to see that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>δ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>&lt;</mo>\\n \\n <mi>δ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a positive constant. It was shown that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>c</mi>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Θ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. In this paper, we show (i) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>c</mi>\\n \\n <mi>Δ</mi>\\n </mrow>\\n \\n <mrow>\\n <msup>\\n <mi>ln</mi>\\n \\n <mi>ϵ</mi>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n </mrow>\\n </mfrac>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a constant such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>ϵ</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and (ii) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>c</mi>\\n \\n <msup>\\n <mi>Δ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a constant such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>&lt;</mo>\\n \\n <mi>ϵ</mi>\\n \\n <mo>&lt;</mo>\\n \\n <mn>0.003</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. Together with the known upper bound <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, this implies that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>c</mi>\\n \\n <msup>\\n <mi>Δ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Θ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </li>\\n </ul></div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"259-268\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23223\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Dębski和Przybyło已经证明,如果G是一个线形图,则χ CN (G)= 0 (ln Δ) .作为一个开放的问题,他们问他们的结果是否可以推广到无爪(k1),3 -free)图,它是线形图的超类。自χ CN (G)≤2 χ on (g),我们的结果回答了他们的开放性问题。已知k1存在独立的家族。 k个有χ ON的自由图(G) = Ω (lnΔ)和χ ON(g) = Ω (K)。对于k1,k自由图n 顶点,我们证明了χ CN (G) = 0 (lnklnn)。 很容易看出,f CN (δ’)≥f CN(δ)当δ′ & lt;δ .设c为正常数。结果表明,fcn (cΔ) = Θ (lnΔ)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extremal Results on Conflict-Free Coloring

A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph G , the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by χ ON ( G ) . By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by χ CN ( G ) ). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, Δ denotes the maximum degree of the graph.

  • We show that if G is a K 1 , k -free graph, then χ ON ( G ) = O ( k ln Δ ) . Dębski and Przybyło had shown that if G is a line graph, then χ CN ( G ) = O ( ln Δ ) . As an open question, they had asked if their result could be extended to claw-free ( K 1 , 3 -free) graphs, which is a superclass of line graphs. Since χ CN ( G ) 2 χ ON ( G ) , our result answers their open question. It is known that there exist separate families of K 1 . k -free graphs with χ ON ( G ) = Ω ( ln Δ ) and χ ON ( G ) = Ω ( k ) .

  • For a K 1 , k -free graph G on n vertices, we show that χ CN ( G ) = O ( ln k ln n ) . This bound is asymptotically tight for some values of k since there are graphs G with χ CN ( G ) = Ω ( ln 2 n ) .

  • Let δ 0 be an integer. We define f CN ( δ ) as follows:

    f CN ( δ ) = max { χ CN ( G ) : G is a graph with minimum degree at least δ } .

    It is easy to see that f CN ( δ ) f CN ( δ ) when δ < δ . Let c be a positive constant. It was shown that f CN ( c Δ ) = Θ ( ln Δ ) . In this paper, we show (i) f CN ( c Δ ln ϵ Δ ) = O ( ln 1 + ϵ Δ ) , where ϵ is a constant such that 0 ϵ 1 and (ii) f CN ( c Δ 1 ϵ ) = Ω ( ln 2 Δ ) , where ϵ is a constant such that 0 < ϵ < 0.003 . Together with the known upper bound χ CN ( G ) = O ( ln 2 Δ ) , this implies that f CN ( c Δ 1 ϵ ) = Θ ( ln 2 Δ ) .

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Graph Theory
Journal of Graph Theory 数学-数学
CiteScore
1.60
自引率
22.20%
发文量
130
审稿时长
6-12 weeks
期刊介绍: The Journal of Graph Theory is devoted to a variety of topics in graph theory, such as structural results about graphs, graph algorithms with theoretical emphasis, and discrete optimization on graphs. The scope of the journal also includes related areas in combinatorics and the interaction of graph theory with other mathematical sciences. A subscription to the Journal of Graph Theory includes a subscription to the Journal of Combinatorial Designs .
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信