求助PDF
{"title":"无冲突着色的极值结果","authors":"Sriram Bhyravarapu, Shiwali Gupta, Subrahmanyam Kalyanasundaram, Rogers Mathew","doi":"10.1002/jgt.23223","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math>, the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>Δ</mi>\n </mrow>\n </mrow>\n </semantics></math> denotes the maximum degree of the graph.\n\n </p><ul>\n \n <li>\n <p>We show that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo> </mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. Dębski and Przybyło had shown that if <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> is a line graph, then <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. As an open question, they had asked if their result could be extended to claw-free (<span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mn>3</mn>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free) graphs, which is a superclass of line graphs. Since <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≤</mo>\n \n <mn>2</mn>\n \n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, our result answers their open question. It is known that there exist separate families of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mtext>.</mtext>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graphs with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> and <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>ON</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>k</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n \n <li>\n <p>For a <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>K</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>,</mo>\n \n <mi>k</mi>\n </mrow>\n </msub>\n </mrow>\n </mrow>\n </semantics></math>-free graph <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> on <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>n</mi>\n </mrow>\n </mrow>\n </semantics></math> vertices, we show that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>k</mi>\n \n <mo> </mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. This bound is asymptotically tight for some values of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>k</mi>\n </mrow>\n </mrow>\n </semantics></math> since there are graphs <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>G</mi>\n </mrow>\n </mrow>\n </semantics></math> with <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n \n <li>\n <p>Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>δ</mi>\n \n <mo>≥</mo>\n \n <mn>0</mn>\n </mrow>\n </mrow>\n </semantics></math> be an integer. We define <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> as follows:\n\n </p><div><span><!--FIGURE--><span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>max</mi>\n \n <mrow>\n <mo>{</mo>\n \n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>:</mo>\n \n <mi>G</mi>\n <mspace></mspace>\n <mspace></mspace>\n \n <mtext>is a graph with minimum degree at least</mtext>\n <mspace></mspace>\n <mspace></mspace>\n \n <mi>δ</mi>\n \n <mo>}</mo>\n </mrow>\n \n <mo>.</mo>\n </mrow>\n </mrow>\n </semantics></math></span><span></span></div>\n \n \n <p>It is easy to see that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>δ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>≥</mo>\n \n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> when <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msup>\n <mi>δ</mi>\n \n <mo>′</mo>\n </msup>\n \n <mo><</mo>\n \n <mi>δ</mi>\n </mrow>\n </mrow>\n </semantics></math>. Let <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>c</mi>\n </mrow>\n </mrow>\n </semantics></math> be a positive constant. It was shown that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <mi>ln</mi>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>. In this paper, we show (i) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mfrac>\n <mrow>\n <mi>c</mi>\n \n <mi>Δ</mi>\n </mrow>\n \n <mrow>\n <msup>\n <mi>ln</mi>\n \n <mi>ϵ</mi>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n </mrow>\n </mfrac>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>+</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </semantics></math> is a constant such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo>≤</mo>\n \n <mi>ϵ</mi>\n \n <mo>≤</mo>\n \n <mn>1</mn>\n </mrow>\n </mrow>\n </semantics></math> and (ii) <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <msup>\n <mi>Δ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Ω</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, where <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mi>ϵ</mi>\n </mrow>\n </mrow>\n </semantics></math> is a constant such that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>0</mn>\n \n <mo><</mo>\n \n <mi>ϵ</mi>\n \n <mo><</mo>\n \n <mn>0.003</mn>\n </mrow>\n </mrow>\n </semantics></math>. Together with the known upper bound <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>χ</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>G</mi>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>O</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, this implies that <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <msub>\n <mi>f</mi>\n \n <mi>CN</mi>\n </msub>\n \n <mrow>\n <mo>(</mo>\n \n <mi>c</mi>\n \n <msup>\n <mi>Δ</mi>\n \n <mrow>\n <mn>1</mn>\n \n <mo>−</mo>\n \n <mi>ϵ</mi>\n </mrow>\n </msup>\n \n <mo>)</mo>\n </mrow>\n \n <mo>=</mo>\n \n <mi>Θ</mi>\n \n <mrow>\n <mo>(</mo>\n \n <msup>\n <mi>ln</mi>\n \n <mn>2</mn>\n </msup>\n \n <mo> </mo>\n \n <mi>Δ</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>.</p>\n </li>\n </ul></div>","PeriodicalId":16014,"journal":{"name":"Journal of Graph Theory","volume":"109 3","pages":"259-268"},"PeriodicalIF":0.9000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extremal Results on Conflict-Free Coloring\",\"authors\":\"Sriram Bhyravarapu, Shiwali Gupta, Subrahmanyam Kalyanasundaram, Rogers Mathew\",\"doi\":\"10.1002/jgt.23223\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>A conflict-free open neighborhood (CFON) coloring of a graph is an assignment of colors to the vertices such that for every vertex there is a color that appears exactly once in its open neighborhood. For a graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>, the smallest number of colors required for such a coloring is called the CFON chromatic number and is denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. By considering closed neighborhood instead of open neighborhood, we obtain the analogous notions of conflict-free (CF) closed neighborhood (CFCN) coloring, and CFCN chromatic number (denoted by <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>). The notion of CF coloring was introduced in 2002, and has since received considerable attention. We study CFON and CFCN colorings and show the following results. In what follows, <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>Δ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> denotes the maximum degree of the graph.\\n\\n </p><ul>\\n \\n <li>\\n <p>We show that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo> </mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. Dębski and Przybyło had shown that if <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a line graph, then <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. As an open question, they had asked if their result could be extended to claw-free (<span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mn>3</mn>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free) graphs, which is a superclass of line graphs. Since <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≤</mo>\\n \\n <mn>2</mn>\\n \\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, our result answers their open question. It is known that there exist separate families of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mtext>.</mtext>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graphs with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> and <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>ON</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>k</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </li>\\n \\n <li>\\n <p>For a <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>K</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>,</mo>\\n \\n <mi>k</mi>\\n </mrow>\\n </msub>\\n </mrow>\\n </mrow>\\n </semantics></math>-free graph <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> on <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>n</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> vertices, we show that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>k</mi>\\n \\n <mo> </mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>n</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. This bound is asymptotically tight for some values of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>k</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> since there are graphs <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>G</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> with <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>n</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </li>\\n \\n <li>\\n <p>Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>δ</mi>\\n \\n <mo>≥</mo>\\n \\n <mn>0</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> be an integer. We define <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> as follows:\\n\\n </p><div><span><!--FIGURE--><span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>max</mi>\\n \\n <mrow>\\n <mo>{</mo>\\n \\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>:</mo>\\n \\n <mi>G</mi>\\n <mspace></mspace>\\n <mspace></mspace>\\n \\n <mtext>is a graph with minimum degree at least</mtext>\\n <mspace></mspace>\\n <mspace></mspace>\\n \\n <mi>δ</mi>\\n \\n <mo>}</mo>\\n </mrow>\\n \\n <mo>.</mo>\\n </mrow>\\n </mrow>\\n </semantics></math></span><span></span></div>\\n \\n \\n <p>It is easy to see that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>δ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>≥</mo>\\n \\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> when <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msup>\\n <mi>δ</mi>\\n \\n <mo>′</mo>\\n </msup>\\n \\n <mo><</mo>\\n \\n <mi>δ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math>. Let <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>c</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> be a positive constant. It was shown that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>c</mi>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Θ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>ln</mi>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>. In this paper, we show (i) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mfrac>\\n <mrow>\\n <mi>c</mi>\\n \\n <mi>Δ</mi>\\n </mrow>\\n \\n <mrow>\\n <msup>\\n <mi>ln</mi>\\n \\n <mi>ϵ</mi>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n </mrow>\\n </mfrac>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>+</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a constant such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>ϵ</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>1</mn>\\n </mrow>\\n </mrow>\\n </semantics></math> and (ii) <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>c</mi>\\n \\n <msup>\\n <mi>Δ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Ω</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, where <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mi>ϵ</mi>\\n </mrow>\\n </mrow>\\n </semantics></math> is a constant such that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>0</mn>\\n \\n <mo><</mo>\\n \\n <mi>ϵ</mi>\\n \\n <mo><</mo>\\n \\n <mn>0.003</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>. Together with the known upper bound <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>χ</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>G</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>O</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, this implies that <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <msub>\\n <mi>f</mi>\\n \\n <mi>CN</mi>\\n </msub>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>c</mi>\\n \\n <msup>\\n <mi>Δ</mi>\\n \\n <mrow>\\n <mn>1</mn>\\n \\n <mo>−</mo>\\n \\n <mi>ϵ</mi>\\n </mrow>\\n </msup>\\n \\n <mo>)</mo>\\n </mrow>\\n \\n <mo>=</mo>\\n \\n <mi>Θ</mi>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <msup>\\n <mi>ln</mi>\\n \\n <mn>2</mn>\\n </msup>\\n \\n <mo> </mo>\\n \\n <mi>Δ</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>.</p>\\n </li>\\n </ul></div>\",\"PeriodicalId\":16014,\"journal\":{\"name\":\"Journal of Graph Theory\",\"volume\":\"109 3\",\"pages\":\"259-268\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2025-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Graph Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23223\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Graph Theory","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jgt.23223","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
引用
批量引用