基于累积误差的扩展卡尔曼滤波的电动汽车充电状态估计

Energy Storage Pub Date : 2025-05-14 DOI:10.1002/est2.70174
Suwarna Shete, R. K. Kumawat
{"title":"基于累积误差的扩展卡尔曼滤波的电动汽车充电状态估计","authors":"Suwarna Shete,&nbsp;R. K. Kumawat","doi":"10.1002/est2.70174","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>The Battery Management System (BMS) is crucial for the effective operation of lithium-ion battery (LIB) systems, particularly in estimating State of Charge (SOC). Given that LIBs exhibit nonlinear behavior, the Extended Kalman Filter (EKF) algorithm proves to be an effective method for estimating SOC. However, neglecting higher-order components can lead to inaccuracies in SOC estimation and potential divergence in the estimation process. To enhance the reliability of SOC estimates, an adaptive EKF is utilized, combining elements of both the Kalman Filter (KF) and EKF. This work develops a battery management system that includes a model-driven SOC estimation approach. The proposed approach employs a cumulative error-based EKF for SOC estimation. This cumulative error is derived from a novel mathematical model that utilizes historical SOC data from the battery, thereby improving estimation accuracy. The proposed method achieved minimum Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) of 0.3352, 0.1697, and 0.412, respectively.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"State of Charge Estimation Based on Cumulative Error Based-Extended Kalman Filter for Electric Vehicle Applications\",\"authors\":\"Suwarna Shete,&nbsp;R. K. Kumawat\",\"doi\":\"10.1002/est2.70174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>The Battery Management System (BMS) is crucial for the effective operation of lithium-ion battery (LIB) systems, particularly in estimating State of Charge (SOC). Given that LIBs exhibit nonlinear behavior, the Extended Kalman Filter (EKF) algorithm proves to be an effective method for estimating SOC. However, neglecting higher-order components can lead to inaccuracies in SOC estimation and potential divergence in the estimation process. To enhance the reliability of SOC estimates, an adaptive EKF is utilized, combining elements of both the Kalman Filter (KF) and EKF. This work develops a battery management system that includes a model-driven SOC estimation approach. The proposed approach employs a cumulative error-based EKF for SOC estimation. This cumulative error is derived from a novel mathematical model that utilizes historical SOC data from the battery, thereby improving estimation accuracy. The proposed method achieved minimum Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) of 0.3352, 0.1697, and 0.412, respectively.</p>\\n </div>\",\"PeriodicalId\":11765,\"journal\":{\"name\":\"Energy Storage\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/est2.70174\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70174","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

电池管理系统(BMS)对于锂离子电池(LIB)系统的有效运行至关重要,特别是在估算充电状态(SOC)方面。考虑到lib具有非线性特性,扩展卡尔曼滤波(EKF)算法被证明是一种有效的SOC估计方法。然而,忽略高阶分量会导致SOC估计的不准确和估计过程中的潜在分歧。为了提高SOC估计的可靠性,结合卡尔曼滤波(KF)和EKF的元素,采用自适应EKF。这项工作开发了一个电池管理系统,其中包括一个模型驱动的SOC估计方法。该方法采用基于累积误差的EKF进行SOC估计。这种累积误差来源于一种新的数学模型,该模型利用了电池的历史SOC数据,从而提高了估计精度。该方法的最小均方误差(MSE)、平均绝对误差(MAE)和均方根误差(RMSE)分别为0.3352、0.1697和0.412。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
State of Charge Estimation Based on Cumulative Error Based-Extended Kalman Filter for Electric Vehicle Applications

The Battery Management System (BMS) is crucial for the effective operation of lithium-ion battery (LIB) systems, particularly in estimating State of Charge (SOC). Given that LIBs exhibit nonlinear behavior, the Extended Kalman Filter (EKF) algorithm proves to be an effective method for estimating SOC. However, neglecting higher-order components can lead to inaccuracies in SOC estimation and potential divergence in the estimation process. To enhance the reliability of SOC estimates, an adaptive EKF is utilized, combining elements of both the Kalman Filter (KF) and EKF. This work develops a battery management system that includes a model-driven SOC estimation approach. The proposed approach employs a cumulative error-based EKF for SOC estimation. This cumulative error is derived from a novel mathematical model that utilizes historical SOC data from the battery, thereby improving estimation accuracy. The proposed method achieved minimum Mean Squared Error (MSE), Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE) of 0.3352, 0.1697, and 0.412, respectively.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信