基于时空集成方法的潮流和风量因子预测

IF 2 4区 工程技术 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Swaechchha Dahal, Sambeet Mishra, Gunne John Hegglid, Bhupendra Bimal Chhetri, Thomas Øyvang
{"title":"基于时空集成方法的潮流和风量因子预测","authors":"Swaechchha Dahal,&nbsp;Sambeet Mishra,&nbsp;Gunne John Hegglid,&nbsp;Bhupendra Bimal Chhetri,&nbsp;Thomas Øyvang","doi":"10.1049/gtd2.70089","DOIUrl":null,"url":null,"abstract":"<p>This research proposes a novel spatio-temporal approach that integrates convolutional long short-term memory (ConvLSTM) networks and graph neural networks (GNNs) to model and predict wind power generation and its impact on power flow. The methodology uniquely combines ConvLSTM for capturing wind generation dynamics with GNN-based power flow analysis, offering a unified framework for renewable energy grid integration. Testing on IEEE standard systems (14-300 bus) demonstrates the approach's scalability and computational efficiency, achieving up to 11x faster computation compared to traditional Newton–Raphson methods. Applied to wind generation scenarios in the Norwegian grid, the ConvLSTM model achieves an <i>R</i><span></span><math>\n <semantics>\n <msup>\n <mrow></mrow>\n <mn>2</mn>\n </msup>\n <annotation>$^2$</annotation>\n </semantics></math> value of 0.977 in forecasting wind generation dynamics, while the GNN model demonstrates robust power flow prediction capabilities with an <i>R</i><span></span><math>\n <semantics>\n <msup>\n <mrow></mrow>\n <mn>2</mn>\n </msup>\n <annotation>$^2$</annotation>\n </semantics></math> of 0.948. This scenario-based framework bridges wind prediction and power flow analysis, enabling efficient grid performance assessment under varying wind conditions, while offering improved computational efficiency for real-time renewable energy integration and grid management.</p>","PeriodicalId":13261,"journal":{"name":"Iet Generation Transmission & Distribution","volume":"19 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70089","citationCount":"0","resultStr":"{\"title\":\"Predicting Power Flow and Wind Capacity Factor Using Integrated Spatio-Temporal Approach\",\"authors\":\"Swaechchha Dahal,&nbsp;Sambeet Mishra,&nbsp;Gunne John Hegglid,&nbsp;Bhupendra Bimal Chhetri,&nbsp;Thomas Øyvang\",\"doi\":\"10.1049/gtd2.70089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research proposes a novel spatio-temporal approach that integrates convolutional long short-term memory (ConvLSTM) networks and graph neural networks (GNNs) to model and predict wind power generation and its impact on power flow. The methodology uniquely combines ConvLSTM for capturing wind generation dynamics with GNN-based power flow analysis, offering a unified framework for renewable energy grid integration. Testing on IEEE standard systems (14-300 bus) demonstrates the approach's scalability and computational efficiency, achieving up to 11x faster computation compared to traditional Newton–Raphson methods. Applied to wind generation scenarios in the Norwegian grid, the ConvLSTM model achieves an <i>R</i><span></span><math>\\n <semantics>\\n <msup>\\n <mrow></mrow>\\n <mn>2</mn>\\n </msup>\\n <annotation>$^2$</annotation>\\n </semantics></math> value of 0.977 in forecasting wind generation dynamics, while the GNN model demonstrates robust power flow prediction capabilities with an <i>R</i><span></span><math>\\n <semantics>\\n <msup>\\n <mrow></mrow>\\n <mn>2</mn>\\n </msup>\\n <annotation>$^2$</annotation>\\n </semantics></math> of 0.948. This scenario-based framework bridges wind prediction and power flow analysis, enabling efficient grid performance assessment under varying wind conditions, while offering improved computational efficiency for real-time renewable energy integration and grid management.</p>\",\"PeriodicalId\":13261,\"journal\":{\"name\":\"Iet Generation Transmission & Distribution\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/gtd2.70089\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Iet Generation Transmission & Distribution\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70089\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Generation Transmission & Distribution","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/gtd2.70089","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种新颖的时空方法,该方法集成了卷积长短期记忆(ConvLSTM)网络和图神经网络(gnn)来建模和预测风力发电及其对潮流的影响。该方法独特地将ConvLSTM用于捕获风力发电动态与基于gnn的潮流分析相结合,为可再生能源电网整合提供了统一的框架。在IEEE标准系统(14-300总线)上的测试证明了该方法的可扩展性和计算效率,与传统的牛顿-拉夫森方法相比,计算速度提高了11倍。将ConvLSTM模型应用于挪威电网的风力发电场景,预测风力发电动态的R 2$ ^2$值为0.977。而GNN模型的R 2$ ^2$为0.948,具有较强的潮流预测能力。这种基于场景的框架连接了风力预测和潮流分析,在不同风力条件下实现了高效的电网性能评估,同时为实时可再生能源整合和电网管理提供了更高的计算效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Predicting Power Flow and Wind Capacity Factor Using Integrated Spatio-Temporal Approach

This research proposes a novel spatio-temporal approach that integrates convolutional long short-term memory (ConvLSTM) networks and graph neural networks (GNNs) to model and predict wind power generation and its impact on power flow. The methodology uniquely combines ConvLSTM for capturing wind generation dynamics with GNN-based power flow analysis, offering a unified framework for renewable energy grid integration. Testing on IEEE standard systems (14-300 bus) demonstrates the approach's scalability and computational efficiency, achieving up to 11x faster computation compared to traditional Newton–Raphson methods. Applied to wind generation scenarios in the Norwegian grid, the ConvLSTM model achieves an R 2 $^2$ value of 0.977 in forecasting wind generation dynamics, while the GNN model demonstrates robust power flow prediction capabilities with an R 2 $^2$ of 0.948. This scenario-based framework bridges wind prediction and power flow analysis, enabling efficient grid performance assessment under varying wind conditions, while offering improved computational efficiency for real-time renewable energy integration and grid management.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Iet Generation Transmission & Distribution
Iet Generation Transmission & Distribution 工程技术-工程:电子与电气
CiteScore
6.10
自引率
12.00%
发文量
301
审稿时长
5.4 months
期刊介绍: IET Generation, Transmission & Distribution is intended as a forum for the publication and discussion of current practice and future developments in electric power generation, transmission and distribution. Practical papers in which examples of good present practice can be described and disseminated are particularly sought. Papers of high technical merit relying on mathematical arguments and computation will be considered, but authors are asked to relegate, as far as possible, the details of analysis to an appendix. The scope of IET Generation, Transmission & Distribution includes the following: Design of transmission and distribution systems Operation and control of power generation Power system management, planning and economics Power system operation, protection and control Power system measurement and modelling Computer applications and computational intelligence in power flexible AC or DC transmission systems Special Issues. Current Call for papers: Next Generation of Synchrophasor-based Power System Monitoring, Operation and Control - https://digital-library.theiet.org/files/IET_GTD_CFP_NGSPSMOC.pdf
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信