{"title":"目的确定北太平洋西部可能产生风暴潮影响的热带气旋系统","authors":"Xiaoqi Zhang, Gregor C. Leckebusch, Kelvin S. Ng","doi":"10.1002/asl.1303","DOIUrl":null,"url":null,"abstract":"<p>The robust assessment of storm surge hazards induced by tropical cyclones in the Western North Pacific is constrained by only ca. 50 seasons of reliable observational data. This can be addressed by constructing physically consistent large tropical cyclone event sets, for example, from ensemble simulations. To allow efficient construction of these event sets, we propose a combination (M&S-WiTRACK) of two objective tracking methods relying solely on near-surface information and validate the performance of the combination on detecting tropical cyclones with potential for storm surge impact using ERA5. The M&S-WiTRACK is formed by a cyclone tracker (M&S) identifying tropical cyclone trajectories based on mean sea level pressure, with a wind-based storm impact identification algorithm (WiTRACK) determining potential storm surge impact areas using 10-m wind speed. For the first time, the general performance of the M&S for tracking tropical cyclones is evaluated and 84.9% of IBTrACS (with 18.3% false alarm rate) in the Western North Pacific from 1980 to 2019 are identified, which is well comparable to more data-intensive tropical cyclone trackers. Furthermore, M&S-WiTRACK successfully identifies over 85% of economic storm surge loss-related tropical cyclones in China. Nearly all tropical cyclones causing storm surges with economic losses exceeding 2 billion RMB are identified.</p>","PeriodicalId":50734,"journal":{"name":"Atmospheric Science Letters","volume":"26 5","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1303","citationCount":"0","resultStr":"{\"title\":\"Objective Identification of Tropical Cyclone Systems With Potential for Storm Surge Impact in the Western North Pacific\",\"authors\":\"Xiaoqi Zhang, Gregor C. Leckebusch, Kelvin S. Ng\",\"doi\":\"10.1002/asl.1303\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The robust assessment of storm surge hazards induced by tropical cyclones in the Western North Pacific is constrained by only ca. 50 seasons of reliable observational data. This can be addressed by constructing physically consistent large tropical cyclone event sets, for example, from ensemble simulations. To allow efficient construction of these event sets, we propose a combination (M&S-WiTRACK) of two objective tracking methods relying solely on near-surface information and validate the performance of the combination on detecting tropical cyclones with potential for storm surge impact using ERA5. The M&S-WiTRACK is formed by a cyclone tracker (M&S) identifying tropical cyclone trajectories based on mean sea level pressure, with a wind-based storm impact identification algorithm (WiTRACK) determining potential storm surge impact areas using 10-m wind speed. For the first time, the general performance of the M&S for tracking tropical cyclones is evaluated and 84.9% of IBTrACS (with 18.3% false alarm rate) in the Western North Pacific from 1980 to 2019 are identified, which is well comparable to more data-intensive tropical cyclone trackers. Furthermore, M&S-WiTRACK successfully identifies over 85% of economic storm surge loss-related tropical cyclones in China. Nearly all tropical cyclones causing storm surges with economic losses exceeding 2 billion RMB are identified.</p>\",\"PeriodicalId\":50734,\"journal\":{\"name\":\"Atmospheric Science Letters\",\"volume\":\"26 5\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/asl.1303\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric Science Letters\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/asl.1303\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Science Letters","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/asl.1303","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Objective Identification of Tropical Cyclone Systems With Potential for Storm Surge Impact in the Western North Pacific
The robust assessment of storm surge hazards induced by tropical cyclones in the Western North Pacific is constrained by only ca. 50 seasons of reliable observational data. This can be addressed by constructing physically consistent large tropical cyclone event sets, for example, from ensemble simulations. To allow efficient construction of these event sets, we propose a combination (M&S-WiTRACK) of two objective tracking methods relying solely on near-surface information and validate the performance of the combination on detecting tropical cyclones with potential for storm surge impact using ERA5. The M&S-WiTRACK is formed by a cyclone tracker (M&S) identifying tropical cyclone trajectories based on mean sea level pressure, with a wind-based storm impact identification algorithm (WiTRACK) determining potential storm surge impact areas using 10-m wind speed. For the first time, the general performance of the M&S for tracking tropical cyclones is evaluated and 84.9% of IBTrACS (with 18.3% false alarm rate) in the Western North Pacific from 1980 to 2019 are identified, which is well comparable to more data-intensive tropical cyclone trackers. Furthermore, M&S-WiTRACK successfully identifies over 85% of economic storm surge loss-related tropical cyclones in China. Nearly all tropical cyclones causing storm surges with economic losses exceeding 2 billion RMB are identified.
期刊介绍:
Atmospheric Science Letters (ASL) is a wholly Open Access electronic journal. Its aim is to provide a fully peer reviewed publication route for new shorter contributions in the field of atmospheric and closely related sciences. Through its ability to publish shorter contributions more rapidly than conventional journals, ASL offers a framework that promotes new understanding and creates scientific debate - providing a platform for discussing scientific issues and techniques.
We encourage the presentation of multi-disciplinary work and contributions that utilise ideas and techniques from parallel areas. We particularly welcome contributions that maximise the visualisation capabilities offered by a purely on-line journal. ASL welcomes papers in the fields of: Dynamical meteorology; Ocean-atmosphere systems; Climate change, variability and impacts; New or improved observations from instrumentation; Hydrometeorology; Numerical weather prediction; Data assimilation and ensemble forecasting; Physical processes of the atmosphere; Land surface-atmosphere systems.