关于对称群Sym群关联方案的Terwilliger代数(7)

IF 0.5 4区 数学 Q3 MATHEMATICS
Allen Herman, Roghayeh Maleki, Andriaherimanana Sarobidy Razafimahatratra
{"title":"关于对称群Sym群关联方案的Terwilliger代数(7)","authors":"Allen Herman,&nbsp;Roghayeh Maleki,&nbsp;Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1002/jcd.21981","DOIUrl":null,"url":null,"abstract":"<p>Terwilliger algebras are finite-dimensional semisimple algebras that were first introduced by Paul Terwilliger in 1992 in studies of association schemes and distance-regular graphs. The Terwilliger algebras of the conjugacy class association schemes of the symmetric groups <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>Sym</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mi>n</mi>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math>, for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mn>3</mn>\n \n <mo>≤</mo>\n \n <mi>n</mi>\n \n <mo>≤</mo>\n \n <mn>6</mn>\n </mrow>\n </mrow>\n </semantics></math>, have been studied and completely determined. The case for <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>Sym</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mn>7</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> is computationally much more difficult and has a potential application to find the size of the largest permutation codes of <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>Sym</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mn>7</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> with a minimal distance of at least 4. In this paper, the dimension, the Wedderburn decomposition, and the block dimension decomposition of the Terwilliger algebra of the conjugacy class scheme of the group <span></span><math>\n <semantics>\n <mrow>\n \n <mrow>\n <mtext>Sym</mtext>\n \n <mrow>\n <mo>(</mo>\n \n <mn>7</mn>\n \n <mo>)</mo>\n </mrow>\n </mrow>\n </mrow>\n </semantics></math> are determined.</p>","PeriodicalId":15389,"journal":{"name":"Journal of Combinatorial Designs","volume":"33 7","pages":"261-274"},"PeriodicalIF":0.5000,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21981","citationCount":"0","resultStr":"{\"title\":\"On the Terwilliger Algebra of the Group Association Scheme of the Symmetric Group \\n \\n \\n \\n Sym\\n \\n (\\n 7\\n )\",\"authors\":\"Allen Herman,&nbsp;Roghayeh Maleki,&nbsp;Andriaherimanana Sarobidy Razafimahatratra\",\"doi\":\"10.1002/jcd.21981\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Terwilliger algebras are finite-dimensional semisimple algebras that were first introduced by Paul Terwilliger in 1992 in studies of association schemes and distance-regular graphs. The Terwilliger algebras of the conjugacy class association schemes of the symmetric groups <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>Sym</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mi>n</mi>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math>, for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mn>3</mn>\\n \\n <mo>≤</mo>\\n \\n <mi>n</mi>\\n \\n <mo>≤</mo>\\n \\n <mn>6</mn>\\n </mrow>\\n </mrow>\\n </semantics></math>, have been studied and completely determined. The case for <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>Sym</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>7</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> is computationally much more difficult and has a potential application to find the size of the largest permutation codes of <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>Sym</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>7</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> with a minimal distance of at least 4. In this paper, the dimension, the Wedderburn decomposition, and the block dimension decomposition of the Terwilliger algebra of the conjugacy class scheme of the group <span></span><math>\\n <semantics>\\n <mrow>\\n \\n <mrow>\\n <mtext>Sym</mtext>\\n \\n <mrow>\\n <mo>(</mo>\\n \\n <mn>7</mn>\\n \\n <mo>)</mo>\\n </mrow>\\n </mrow>\\n </mrow>\\n </semantics></math> are determined.</p>\",\"PeriodicalId\":15389,\"journal\":{\"name\":\"Journal of Combinatorial Designs\",\"volume\":\"33 7\",\"pages\":\"261-274\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2025-04-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/jcd.21981\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combinatorial Designs\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21981\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combinatorial Designs","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jcd.21981","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Terwilliger代数是有限维半简单代数,由Paul Terwilliger于1992年在关联方案和距离正则图的研究中首次引入。对称群Sym (n)的共轭类关联方案的Terwilliger代数对于3≤n≤6,已经研究并完全确定。Sym(7)的情况在计算上要困难得多,并且有一个潜在的应用程序来查找最大排列代码的大小Sym(7)的最小距离至少为4。在本文中,维数,Wedderburn分解,确定了群Sym(7)的共轭类格式的Terwilliger代数的块维分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Terwilliger Algebra of the Group Association Scheme of the Symmetric Group Sym ( 7 )

Terwilliger algebras are finite-dimensional semisimple algebras that were first introduced by Paul Terwilliger in 1992 in studies of association schemes and distance-regular graphs. The Terwilliger algebras of the conjugacy class association schemes of the symmetric groups Sym ( n ) , for 3 n 6 , have been studied and completely determined. The case for Sym ( 7 ) is computationally much more difficult and has a potential application to find the size of the largest permutation codes of Sym ( 7 ) with a minimal distance of at least 4. In this paper, the dimension, the Wedderburn decomposition, and the block dimension decomposition of the Terwilliger algebra of the conjugacy class scheme of the group Sym ( 7 ) are determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
14.30%
发文量
55
审稿时长
>12 weeks
期刊介绍: The Journal of Combinatorial Designs is an international journal devoted to the timely publication of the most influential papers in the area of combinatorial design theory. All topics in design theory, and in which design theory has important applications, are covered, including: block designs, t-designs, pairwise balanced designs and group divisible designs Latin squares, quasigroups, and related algebras computational methods in design theory construction methods applications in computer science, experimental design theory, and coding theory graph decompositions, factorizations, and design-theoretic techniques in graph theory and extremal combinatorics finite geometry and its relation with design theory. algebraic aspects of design theory. Researchers and scientists can depend on the Journal of Combinatorial Designs for the most recent developments in this rapidly growing field, and to provide a forum for both theoretical research and applications. All papers appearing in the Journal of Combinatorial Designs are carefully peer refereed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信