old - b流体饱和垂向Brinkman多孔层双扩散对流的不稳定性

IF 2.7 3区 工程技术 Q3 ENGINEERING, CHEMICAL
Yuanzhen Ren, Jialu Wang, Beinan Jia, Yongjun Jian
{"title":"old - b流体饱和垂向Brinkman多孔层双扩散对流的不稳定性","authors":"Yuanzhen Ren,&nbsp;Jialu Wang,&nbsp;Beinan Jia,&nbsp;Yongjun Jian","doi":"10.1007/s11242-025-02179-z","DOIUrl":null,"url":null,"abstract":"<div><p>The instability of double-diffusive convection in an Oldroyd-B fluid in a vertical porous layer is investigated using a modified Darcy–Brinkman–Oldroyd model. Squire's theorem is validated, reducing the problem to two-dimensional linear instability. The Orr–Sommerfeld eigenvalue problem is solved numerically using the Chebyshev collocation method. The effects of dimensionless parameters on the neutral stability curves are examined. It is found that the Darcy–Prandtl number (<i>Pr</i><sub><i>D</i></sub>), relaxation time (<i>λ</i><sub>1</sub>), and normalized porosity (<i>η</i>) have dual effects on instability. <i>Pr</i><sub><i>D</i></sub> has two critical values: <i>Pr</i><sub><i>Dc</i>1</sub> and <i>Pr</i><sub><i>Dc</i>2</sub>. When <i>Pr</i><sub><i>Dc</i>1</sub> &lt; <i>Pr</i><sub><i>D</i></sub> &lt; <i>Pr</i><sub><i>Dc</i>2</sub>, <i>Pr</i><sub><i>D</i></sub> inhibits convection; otherwise, <i>Pr</i><sub><i>D</i></sub> promotes convection. The effect of <i>λ</i><sub>1</sub> on fluid stability is influenced by <i>Pr</i><sub><i>D</i></sub>. When <i>η</i> &gt; <i>η</i><sub><i>c</i></sub> (the critical value of <i>η</i>), it promotes flow instability; when <i>η</i> &lt; <i>η</i><sub><i>c</i></sub>, it suppresses instability. For Lewis number <i>Le</i> &gt; 2.31, two instability regions are observed, requiring three critical Darcy–Rayleigh numbers to determine flow instability. For <i>Le</i> &lt; 2.31, the finite unstable region disappears. Finally, the relaxation parameter <i>λ</i><sub>2</sub> promotes flow stability.</p></div>","PeriodicalId":804,"journal":{"name":"Transport in Porous Media","volume":"152 6","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Instability of Double-Diffusive Convection in an Oldroyd-B Fluid-Saturated Vertical Brinkman Porous Layer\",\"authors\":\"Yuanzhen Ren,&nbsp;Jialu Wang,&nbsp;Beinan Jia,&nbsp;Yongjun Jian\",\"doi\":\"10.1007/s11242-025-02179-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The instability of double-diffusive convection in an Oldroyd-B fluid in a vertical porous layer is investigated using a modified Darcy–Brinkman–Oldroyd model. Squire's theorem is validated, reducing the problem to two-dimensional linear instability. The Orr–Sommerfeld eigenvalue problem is solved numerically using the Chebyshev collocation method. The effects of dimensionless parameters on the neutral stability curves are examined. It is found that the Darcy–Prandtl number (<i>Pr</i><sub><i>D</i></sub>), relaxation time (<i>λ</i><sub>1</sub>), and normalized porosity (<i>η</i>) have dual effects on instability. <i>Pr</i><sub><i>D</i></sub> has two critical values: <i>Pr</i><sub><i>Dc</i>1</sub> and <i>Pr</i><sub><i>Dc</i>2</sub>. When <i>Pr</i><sub><i>Dc</i>1</sub> &lt; <i>Pr</i><sub><i>D</i></sub> &lt; <i>Pr</i><sub><i>Dc</i>2</sub>, <i>Pr</i><sub><i>D</i></sub> inhibits convection; otherwise, <i>Pr</i><sub><i>D</i></sub> promotes convection. The effect of <i>λ</i><sub>1</sub> on fluid stability is influenced by <i>Pr</i><sub><i>D</i></sub>. When <i>η</i> &gt; <i>η</i><sub><i>c</i></sub> (the critical value of <i>η</i>), it promotes flow instability; when <i>η</i> &lt; <i>η</i><sub><i>c</i></sub>, it suppresses instability. For Lewis number <i>Le</i> &gt; 2.31, two instability regions are observed, requiring three critical Darcy–Rayleigh numbers to determine flow instability. For <i>Le</i> &lt; 2.31, the finite unstable region disappears. Finally, the relaxation parameter <i>λ</i><sub>2</sub> promotes flow stability.</p></div>\",\"PeriodicalId\":804,\"journal\":{\"name\":\"Transport in Porous Media\",\"volume\":\"152 6\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Transport in Porous Media\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11242-025-02179-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transport in Porous Media","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11242-025-02179-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

采用改进的Darcy-Brinkman-Oldroyd模型研究了垂直多孔层中Oldroyd-B流体双扩散对流的不稳定性。验证了斯夸尔定理,将问题简化为二维线性不稳定性。采用切比雪夫配点法对Orr-Sommerfeld特征值问题进行了数值求解。研究了无量纲参数对中性稳定性曲线的影响。发现Darcy-Prandtl数(PrD)、弛豫时间(λ1)和归一化孔隙率(η)对不稳定性有双重影响。PrD有两个临界值:PrDc1和PrDc2。当PrDc1 <; PrD <; PrDc2时,PrD抑制对流;否则,PrD会促进对流。λ1对流体稳定性的影响受PrD的影响。η > ηc (η的临界值)时,促进流动不稳定;当η <; ηc时,它抑制不稳定性。对于Lewis数Le >; 2.31,观察到两个不稳定区域,需要三个临界Darcy-Rayleigh数来确定流动不稳定。对于le<; 2.31,有限不稳定区域消失。最后,松弛参数λ2促进了流动稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Instability of Double-Diffusive Convection in an Oldroyd-B Fluid-Saturated Vertical Brinkman Porous Layer

The instability of double-diffusive convection in an Oldroyd-B fluid in a vertical porous layer is investigated using a modified Darcy–Brinkman–Oldroyd model. Squire's theorem is validated, reducing the problem to two-dimensional linear instability. The Orr–Sommerfeld eigenvalue problem is solved numerically using the Chebyshev collocation method. The effects of dimensionless parameters on the neutral stability curves are examined. It is found that the Darcy–Prandtl number (PrD), relaxation time (λ1), and normalized porosity (η) have dual effects on instability. PrD has two critical values: PrDc1 and PrDc2. When PrDc1 < PrD < PrDc2, PrD inhibits convection; otherwise, PrD promotes convection. The effect of λ1 on fluid stability is influenced by PrD. When η > ηc (the critical value of η), it promotes flow instability; when η < ηc, it suppresses instability. For Lewis number Le > 2.31, two instability regions are observed, requiring three critical Darcy–Rayleigh numbers to determine flow instability. For Le < 2.31, the finite unstable region disappears. Finally, the relaxation parameter λ2 promotes flow stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Transport in Porous Media
Transport in Porous Media 工程技术-工程:化工
CiteScore
5.30
自引率
7.40%
发文量
155
审稿时长
4.2 months
期刊介绍: -Publishes original research on physical, chemical, and biological aspects of transport in porous media- Papers on porous media research may originate in various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering)- Emphasizes theory, (numerical) modelling, laboratory work, and non-routine applications- Publishes work of a fundamental nature, of interest to a wide readership, that provides novel insight into porous media processes- Expanded in 2007 from 12 to 15 issues per year. Transport in Porous Media publishes original research on physical and chemical aspects of transport phenomena in rigid and deformable porous media. These phenomena, occurring in single and multiphase flow in porous domains, can be governed by extensive quantities such as mass of a fluid phase, mass of component of a phase, momentum, or energy. Moreover, porous medium deformations can be induced by the transport phenomena, by chemical and electro-chemical activities such as swelling, or by external loading through forces and displacements. These porous media phenomena may be studied by researchers from various areas of physics, chemistry, biology, natural or materials science, and engineering (chemical, civil, agricultural, petroleum, environmental, electrical, and mechanical engineering).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信