Dongbin Zhang, Mengru Qiu, Yu Tian, Shuo Zhang, Fan Wu
{"title":"水凝胶研究进展:25年文献计量学综述","authors":"Dongbin Zhang, Mengru Qiu, Yu Tian, Shuo Zhang, Fan Wu","doi":"10.1007/s10856-025-06887-2","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents a comprehensive bibliometric analysis of hydrogel research from 2000 to 2025, examining 101,291 publications from the OpenAlex database to highlight the field’s evolution, trends, and impact, providing a better landscape of the field. The analysis demonstrates significant growth in the research output, from ~350 publications in 2000 to nearly 11,000 in 2024, with 37% being open access. Publication patterns demonstrate Physical Sciences leading with about 50,000 publications, followed by Life Sciences (~30,000) and Health Sciences (~21,000). The citation analysis emphasizes that 20% of all citations result from the top 1% of papers, demonstrating the concentration of the research impact. The study identifies key research hubs, with China as a leader in the publication (27,931 publications), while the United States maintains the highest citation impact (>1 million citations). Network analysis reveals increasingly complicated international collaborations, particularly between the United States and China. Topic modeling using Latent Dirichlet Allocation identifies 17 distinct research themes, emphasizing the field’s diversification from fundamental material features to advanced applications in the tissue engineering, drug delivery, and regenerative medicine. This analysis provides valuable insights into the dynamic landscape of hydrogel research, highlighting opportunities for future innovation and collaboration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10856-025-06887-2.pdf","citationCount":"0","resultStr":"{\"title\":\"Advances in hydrogel research: a 25-year bibliometric overview\",\"authors\":\"Dongbin Zhang, Mengru Qiu, Yu Tian, Shuo Zhang, Fan Wu\",\"doi\":\"10.1007/s10856-025-06887-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents a comprehensive bibliometric analysis of hydrogel research from 2000 to 2025, examining 101,291 publications from the OpenAlex database to highlight the field’s evolution, trends, and impact, providing a better landscape of the field. The analysis demonstrates significant growth in the research output, from ~350 publications in 2000 to nearly 11,000 in 2024, with 37% being open access. Publication patterns demonstrate Physical Sciences leading with about 50,000 publications, followed by Life Sciences (~30,000) and Health Sciences (~21,000). The citation analysis emphasizes that 20% of all citations result from the top 1% of papers, demonstrating the concentration of the research impact. The study identifies key research hubs, with China as a leader in the publication (27,931 publications), while the United States maintains the highest citation impact (>1 million citations). Network analysis reveals increasingly complicated international collaborations, particularly between the United States and China. Topic modeling using Latent Dirichlet Allocation identifies 17 distinct research themes, emphasizing the field’s diversification from fundamental material features to advanced applications in the tissue engineering, drug delivery, and regenerative medicine. This analysis provides valuable insights into the dynamic landscape of hydrogel research, highlighting opportunities for future innovation and collaboration.</p><h3>Graphical Abstract</h3><div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":647,\"journal\":{\"name\":\"Journal of Materials Science: Materials in Medicine\",\"volume\":\"36 1\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2025-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s10856-025-06887-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Science: Materials in Medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10856-025-06887-2\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10856-025-06887-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
Advances in hydrogel research: a 25-year bibliometric overview
This study presents a comprehensive bibliometric analysis of hydrogel research from 2000 to 2025, examining 101,291 publications from the OpenAlex database to highlight the field’s evolution, trends, and impact, providing a better landscape of the field. The analysis demonstrates significant growth in the research output, from ~350 publications in 2000 to nearly 11,000 in 2024, with 37% being open access. Publication patterns demonstrate Physical Sciences leading with about 50,000 publications, followed by Life Sciences (~30,000) and Health Sciences (~21,000). The citation analysis emphasizes that 20% of all citations result from the top 1% of papers, demonstrating the concentration of the research impact. The study identifies key research hubs, with China as a leader in the publication (27,931 publications), while the United States maintains the highest citation impact (>1 million citations). Network analysis reveals increasingly complicated international collaborations, particularly between the United States and China. Topic modeling using Latent Dirichlet Allocation identifies 17 distinct research themes, emphasizing the field’s diversification from fundamental material features to advanced applications in the tissue engineering, drug delivery, and regenerative medicine. This analysis provides valuable insights into the dynamic landscape of hydrogel research, highlighting opportunities for future innovation and collaboration.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.