pemfc中有序催化剂层的优势:理论展望与未来发展

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Muhammad Yusro and Viktor Hacker
{"title":"pemfc中有序催化剂层的优势:理论展望与未来发展","authors":"Muhammad Yusro and Viktor Hacker","doi":"10.1039/D5SE00028A","DOIUrl":null,"url":null,"abstract":"<p >The catalyst layer in Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for facilitating electrochemical reactions. These layers required meticulously engineered structures to optimize the accessibility of catalyst sites to reactants and to enhance electron and proton transport. The advancement of patterned ordered catalyst layers has attracted significant attention, as this arrangement is thought to resolve essential challenges relative to conventional catalyst layer structures in fuel cells. The theoretical foundation for the usage of ordered catalyst layers and their superior performance has not yet been documented. This article addresses the implications of shifting from conventional catalyst layers (CCLs) to ordered catalyst layers (OCLs) in PEMFC applications. The discussion will address important aspects, including mass transfer, reaction rates, platinum utilization, water management, and the generation of electricity, which are essential for interpreting the performance of PEMFCs. Future directions involve modeling, manufacturing scalability, inventive structural designs, and the dissemination of developments, providing insights into enhancing the performance and practicality of PEMFCs.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 10","pages":" 2625-2650"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00028a?page=search","citationCount":"0","resultStr":"{\"title\":\"Advantages of ordered catalyst layers in PEMFCs: theoretical perspectives and future development\",\"authors\":\"Muhammad Yusro and Viktor Hacker\",\"doi\":\"10.1039/D5SE00028A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The catalyst layer in Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for facilitating electrochemical reactions. These layers required meticulously engineered structures to optimize the accessibility of catalyst sites to reactants and to enhance electron and proton transport. The advancement of patterned ordered catalyst layers has attracted significant attention, as this arrangement is thought to resolve essential challenges relative to conventional catalyst layer structures in fuel cells. The theoretical foundation for the usage of ordered catalyst layers and their superior performance has not yet been documented. This article addresses the implications of shifting from conventional catalyst layers (CCLs) to ordered catalyst layers (OCLs) in PEMFC applications. The discussion will address important aspects, including mass transfer, reaction rates, platinum utilization, water management, and the generation of electricity, which are essential for interpreting the performance of PEMFCs. Future directions involve modeling, manufacturing scalability, inventive structural designs, and the dissemination of developments, providing insights into enhancing the performance and practicality of PEMFCs.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 10\",\"pages\":\" 2625-2650\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/se/d5se00028a?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00028a\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00028a","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

质子交换膜燃料电池(pemfc)中的催化剂层是促进电化学反应的关键。这些层需要精心设计结构,以优化催化剂位置对反应物的可及性,并增强电子和质子的传输。有图案的有序催化剂层的发展引起了极大的关注,因为这种排列被认为解决了与燃料电池中传统催化剂层结构相关的基本挑战。使用有序催化剂层及其优越性能的理论基础尚未有文献记载。本文讨论了在PEMFC应用中从传统催化剂层(ccl)转向有序催化剂层(ocl)的影响。讨论将涉及重要方面,包括传质、反应速率、铂利用、水管理和发电,这些对解释pemfc的性能至关重要。未来的方向包括建模、制造可扩展性、创造性结构设计和发展的传播,为提高pemfc的性能和实用性提供见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Advantages of ordered catalyst layers in PEMFCs: theoretical perspectives and future development

The catalyst layer in Proton Exchange Membrane Fuel Cells (PEMFCs) is crucial for facilitating electrochemical reactions. These layers required meticulously engineered structures to optimize the accessibility of catalyst sites to reactants and to enhance electron and proton transport. The advancement of patterned ordered catalyst layers has attracted significant attention, as this arrangement is thought to resolve essential challenges relative to conventional catalyst layer structures in fuel cells. The theoretical foundation for the usage of ordered catalyst layers and their superior performance has not yet been documented. This article addresses the implications of shifting from conventional catalyst layers (CCLs) to ordered catalyst layers (OCLs) in PEMFC applications. The discussion will address important aspects, including mass transfer, reaction rates, platinum utilization, water management, and the generation of electricity, which are essential for interpreting the performance of PEMFCs. Future directions involve modeling, manufacturing scalability, inventive structural designs, and the dissemination of developments, providing insights into enhancing the performance and practicality of PEMFCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信