Jhayden J. A. Jarman , Andreas B. zur Bonsen , Jonathan H. George
{"title":"hypsampsone A†的生物合成研究","authors":"Jhayden J. A. Jarman , Andreas B. zur Bonsen , Jonathan H. George","doi":"10.1039/d5ob00045a","DOIUrl":null,"url":null,"abstract":"<div><div>A simplified proposal for the biogenetic origin of hypsampsone A, a complex meroterpenoid, is supported by a bioinspired cascade reaction that rapidly assembles its polycyclic core. The key steps in both the proposed biosynthesis and the bioinspired cascade are a spontaneous intramolecular carbonyl–ene reaction, an α-hydroxy-β-diketone rearrangement and a terminating intramolecular aldol reaction. The feasibility of this model cascade reaction strongly suggests that hypsampsone A is a highly rearranged member of the polycyclic polyprenylated acylphloroglucinol (PPAP) family of natural products.</div></div>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":"23 19","pages":"Pages 4671-4674"},"PeriodicalIF":2.7000,"publicationDate":"2025-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A synthetic investigation into the biosynthesis of hypsampsone A†\",\"authors\":\"Jhayden J. A. Jarman , Andreas B. zur Bonsen , Jonathan H. George\",\"doi\":\"10.1039/d5ob00045a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A simplified proposal for the biogenetic origin of hypsampsone A, a complex meroterpenoid, is supported by a bioinspired cascade reaction that rapidly assembles its polycyclic core. The key steps in both the proposed biosynthesis and the bioinspired cascade are a spontaneous intramolecular carbonyl–ene reaction, an α-hydroxy-β-diketone rearrangement and a terminating intramolecular aldol reaction. The feasibility of this model cascade reaction strongly suggests that hypsampsone A is a highly rearranged member of the polycyclic polyprenylated acylphloroglucinol (PPAP) family of natural products.</div></div>\",\"PeriodicalId\":96,\"journal\":{\"name\":\"Organic & Biomolecular Chemistry\",\"volume\":\"23 19\",\"pages\":\"Pages 4671-4674\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-04-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Organic & Biomolecular Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S1477052025003027\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Organic & Biomolecular Chemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S1477052025003027","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
A synthetic investigation into the biosynthesis of hypsampsone A†
A simplified proposal for the biogenetic origin of hypsampsone A, a complex meroterpenoid, is supported by a bioinspired cascade reaction that rapidly assembles its polycyclic core. The key steps in both the proposed biosynthesis and the bioinspired cascade are a spontaneous intramolecular carbonyl–ene reaction, an α-hydroxy-β-diketone rearrangement and a terminating intramolecular aldol reaction. The feasibility of this model cascade reaction strongly suggests that hypsampsone A is a highly rearranged member of the polycyclic polyprenylated acylphloroglucinol (PPAP) family of natural products.
期刊介绍:
Organic & Biomolecular Chemistry is an international journal using integrated research in chemistry-organic chemistry. Founded in 2003 by the Royal Society of Chemistry, the journal is published in Semimonthly issues and has been indexed by SCIE, a leading international database. The journal focuses on the key research and cutting-edge progress in the field of chemistry-organic chemistry, publishes and reports the research results in this field in a timely manner, and is committed to becoming a window and platform for rapid academic exchanges among peers in this field. The journal's impact factor in 2023 is 2.9, and its CiteScore is 5.5.