用于无枝晶固态锂金属电池的Ba0.6Sr0.4TiO3铁电填料增强聚偏氟乙烯聚合物电解质

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Chen Yang, Hongjian Zhang, Mingtao Zhu, Ping Li, Hao Wu, Qiushi Wang and Yong Zhang
{"title":"用于无枝晶固态锂金属电池的Ba0.6Sr0.4TiO3铁电填料增强聚偏氟乙烯聚合物电解质","authors":"Chen Yang, Hongjian Zhang, Mingtao Zhu, Ping Li, Hao Wu, Qiushi Wang and Yong Zhang","doi":"10.1039/D5SE00285K","DOIUrl":null,"url":null,"abstract":"<p >Polyvinylidene fluoride (PVDF)-based electrolytes have attracted significant attention for their potential use in solid-state lithium batteries (SSLBs) due to their superior electrochemical performance and safety. However, their low ionic conductivity and uneven lithium deposition hinder the further application of PVDF-based electrolytes. Herein, this work focuses on incorporating Ba<small><sub>0.6</sub></small>Sr<small><sub>0.4</sub></small>TiO<small><sub>3</sub></small> (BST) ferroelectric ceramics into PVDF to form composite solid-state electrolytes (CSEs). The BST ferroelectric ceramics can create an intrinsic electric field that facilitates lithium-ion transport and enables uniform Li deposition. In addition, benefiting from the high dielectric constant of BST and dipoles generated from the asymmetric structure, PVDF–BST CSEs achieve a high ionic conductivity (1.79 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small>) due to more free lithium ions, a wide electrochemical window of 4.8 V (<em>vs.</em> Li/Li<small><sup>+</sup></small>) and a high Li<small><sup>+</sup></small> transference number (0.37). The assembled Li|PVDF–BST|Li symmetrical cells can steadily cycle for 1100 h at 0.1 mA cm<small><sup>−2</sup></small> at 25 °C. The assembled Li|PVDF–BST|LiFePO<small><sub>4</sub></small> cells show long-term cycling stability with a capacity retention of 85.6% after 100 cycles at 0.5C and a capacity retention of 81.4% after 200 cycles at 1C. This work provides a new strategy for improving the performance of the PVDF-based electrolytes by incorporating ferroelectric ceramics.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 10","pages":" 2782-2791"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ba0.6Sr0.4TiO3 ferroelectric filler-reinforced poly(vinylidene fluoride) polymer electrolytes for dendrite-free solid-state Li metal batteries†\",\"authors\":\"Chen Yang, Hongjian Zhang, Mingtao Zhu, Ping Li, Hao Wu, Qiushi Wang and Yong Zhang\",\"doi\":\"10.1039/D5SE00285K\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Polyvinylidene fluoride (PVDF)-based electrolytes have attracted significant attention for their potential use in solid-state lithium batteries (SSLBs) due to their superior electrochemical performance and safety. However, their low ionic conductivity and uneven lithium deposition hinder the further application of PVDF-based electrolytes. Herein, this work focuses on incorporating Ba<small><sub>0.6</sub></small>Sr<small><sub>0.4</sub></small>TiO<small><sub>3</sub></small> (BST) ferroelectric ceramics into PVDF to form composite solid-state electrolytes (CSEs). The BST ferroelectric ceramics can create an intrinsic electric field that facilitates lithium-ion transport and enables uniform Li deposition. In addition, benefiting from the high dielectric constant of BST and dipoles generated from the asymmetric structure, PVDF–BST CSEs achieve a high ionic conductivity (1.79 × 10<small><sup>−4</sup></small> S cm<small><sup>−1</sup></small>) due to more free lithium ions, a wide electrochemical window of 4.8 V (<em>vs.</em> Li/Li<small><sup>+</sup></small>) and a high Li<small><sup>+</sup></small> transference number (0.37). The assembled Li|PVDF–BST|Li symmetrical cells can steadily cycle for 1100 h at 0.1 mA cm<small><sup>−2</sup></small> at 25 °C. The assembled Li|PVDF–BST|LiFePO<small><sub>4</sub></small> cells show long-term cycling stability with a capacity retention of 85.6% after 100 cycles at 0.5C and a capacity retention of 81.4% after 200 cycles at 1C. This work provides a new strategy for improving the performance of the PVDF-based electrolytes by incorporating ferroelectric ceramics.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 10\",\"pages\":\" 2782-2791\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00285k\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00285k","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

聚偏氟乙烯(PVDF)基电解质由于其优异的电化学性能和安全性而在固态锂电池(sslb)中具有潜在的应用前景,引起了人们的广泛关注。然而,它们的低离子电导率和不均匀的锂沉积阻碍了pvdf基电解质的进一步应用。本文将Ba0.6Sr0.4TiO3 (BST)铁电陶瓷掺入PVDF中,形成复合固态电解质(CSEs)。BST铁电陶瓷可以产生一个本征电场,促进锂离子的传输,并实现均匀的锂沉积。此外,得益于BST的高介电常数和不对称结构产生的偶极子,PVDF-BST CSEs由于更多的自由锂离子,具有高离子电导率(1.79 × 10−4 S cm−1),宽的电化学窗口为4.8 V (vs. Li/Li+)和高Li+转移数(0.37)。组装的锂离子| PVDF-BST |锂离子对称电池可以在0.1 mA cm−2下在25°C下稳定循环1100小时。制备的Li| PVDF-BST |LiFePO4电池具有长期循环稳定性,在0.5℃下循环100次后容量保持率为85.6%,在1C下循环200次后容量保持率为81.4%。这项工作为通过加入铁电陶瓷来改善pvdf基电解质的性能提供了一种新的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ba0.6Sr0.4TiO3 ferroelectric filler-reinforced poly(vinylidene fluoride) polymer electrolytes for dendrite-free solid-state Li metal batteries†

Polyvinylidene fluoride (PVDF)-based electrolytes have attracted significant attention for their potential use in solid-state lithium batteries (SSLBs) due to their superior electrochemical performance and safety. However, their low ionic conductivity and uneven lithium deposition hinder the further application of PVDF-based electrolytes. Herein, this work focuses on incorporating Ba0.6Sr0.4TiO3 (BST) ferroelectric ceramics into PVDF to form composite solid-state electrolytes (CSEs). The BST ferroelectric ceramics can create an intrinsic electric field that facilitates lithium-ion transport and enables uniform Li deposition. In addition, benefiting from the high dielectric constant of BST and dipoles generated from the asymmetric structure, PVDF–BST CSEs achieve a high ionic conductivity (1.79 × 10−4 S cm−1) due to more free lithium ions, a wide electrochemical window of 4.8 V (vs. Li/Li+) and a high Li+ transference number (0.37). The assembled Li|PVDF–BST|Li symmetrical cells can steadily cycle for 1100 h at 0.1 mA cm−2 at 25 °C. The assembled Li|PVDF–BST|LiFePO4 cells show long-term cycling stability with a capacity retention of 85.6% after 100 cycles at 0.5C and a capacity retention of 81.4% after 200 cycles at 1C. This work provides a new strategy for improving the performance of the PVDF-based electrolytes by incorporating ferroelectric ceramics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信