无掺杂疏水性芴基空穴传输材料:甲氧基取代三苯胺和咔唑外周基团对钙钛矿太阳能电池性能的影响

IF 5 3区 材料科学 Q2 CHEMISTRY, PHYSICAL
Vighneshwar Ganesh Bhat, Kavya S. Keremane, Subramanya K. S., Archana S., Akash Hegde, Ivy M. Asuo, Bed Poudel and Udaya Kumar Dalimba
{"title":"无掺杂疏水性芴基空穴传输材料:甲氧基取代三苯胺和咔唑外周基团对钙钛矿太阳能电池性能的影响","authors":"Vighneshwar Ganesh Bhat, Kavya S. Keremane, Subramanya K. S., Archana S., Akash Hegde, Ivy M. Asuo, Bed Poudel and Udaya Kumar Dalimba","doi":"10.1039/D5SE00120J","DOIUrl":null,"url":null,"abstract":"<p >Hole-transporting materials (HTMs) are crucial for charge separation in perovskite solar cells (PVSCs). Besides possessing suitable HOMO/LUMO energies, HTMs should ideally be hydrophobic to protect the perovskites from atmospheric moisture to enhance device stability. We designed two fluorene-core D–π–D-type organic HTMs (<strong>V1</strong> and <strong>V2</strong>), consisting of either 4,4′-methoxy triphenylamine (<strong>V1</strong>) or <em>N</em>-phenyl-3,6-methoxy carbazole (<strong>V2</strong>) as the peripheral donor moiety. Optoelectronic characterization and density functional theory calculations confirmed the intramolecular charge transfer within these new HTMs. UPS and REELS analyses revealed favorable HOMO–LUMO energy level alignment of <strong>V1</strong> and <strong>V2</strong> with the work functions of MAPbI<small><sub>3</sub></small> and gold electrode for effective charge extraction. TRPL and transient absorption studies commendably explained better quenching of perovskite's luminescence by <strong>V1</strong> over <strong>V2</strong>, suggesting a better interfacial contact of <strong>V1</strong> with the perovskite layer. Accordingly, the PVSCs with <strong>V1</strong> and <strong>V2</strong> as HTMs in an architecture ITO/SnO<small><sub>2</sub></small>/MAPbI<small><sub>3</sub></small>/HTM(<strong>V1</strong> or <strong>V2</strong>)/Au demonstrated power conversion efficiency (PCE) of 14.05% and 12.73% respectively. Also, the device with <strong>V1</strong> retains 75% of its initial efficiency for more than 480 hours. The contact angle measurements revealed the strong hydrophobicity of both alkylated fluorene molecules (<strong>V1</strong> and <strong>V2</strong>), and impedance spectroscopy measurements further revealed higher <em>R</em><small><sub>rec</sub></small> values for these HTMs, indicating improved charge transport and reduced recombination losses. These findings demonstrate the potential of the newly developed hydrophobic fluorene-based HTMs for achieving long-lasting performance in PVSCs.</p>","PeriodicalId":104,"journal":{"name":"Sustainable Energy & Fuels","volume":" 10","pages":" 2769-2781"},"PeriodicalIF":5.0000,"publicationDate":"2025-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dopant-free hydrophobic fluorene-based hole transport materials: impact of methoxy-substituted triphenylamine and carbazole peripheral groups on the performance of perovskite solar cells†\",\"authors\":\"Vighneshwar Ganesh Bhat, Kavya S. Keremane, Subramanya K. S., Archana S., Akash Hegde, Ivy M. Asuo, Bed Poudel and Udaya Kumar Dalimba\",\"doi\":\"10.1039/D5SE00120J\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Hole-transporting materials (HTMs) are crucial for charge separation in perovskite solar cells (PVSCs). Besides possessing suitable HOMO/LUMO energies, HTMs should ideally be hydrophobic to protect the perovskites from atmospheric moisture to enhance device stability. We designed two fluorene-core D–π–D-type organic HTMs (<strong>V1</strong> and <strong>V2</strong>), consisting of either 4,4′-methoxy triphenylamine (<strong>V1</strong>) or <em>N</em>-phenyl-3,6-methoxy carbazole (<strong>V2</strong>) as the peripheral donor moiety. Optoelectronic characterization and density functional theory calculations confirmed the intramolecular charge transfer within these new HTMs. UPS and REELS analyses revealed favorable HOMO–LUMO energy level alignment of <strong>V1</strong> and <strong>V2</strong> with the work functions of MAPbI<small><sub>3</sub></small> and gold electrode for effective charge extraction. TRPL and transient absorption studies commendably explained better quenching of perovskite's luminescence by <strong>V1</strong> over <strong>V2</strong>, suggesting a better interfacial contact of <strong>V1</strong> with the perovskite layer. Accordingly, the PVSCs with <strong>V1</strong> and <strong>V2</strong> as HTMs in an architecture ITO/SnO<small><sub>2</sub></small>/MAPbI<small><sub>3</sub></small>/HTM(<strong>V1</strong> or <strong>V2</strong>)/Au demonstrated power conversion efficiency (PCE) of 14.05% and 12.73% respectively. Also, the device with <strong>V1</strong> retains 75% of its initial efficiency for more than 480 hours. The contact angle measurements revealed the strong hydrophobicity of both alkylated fluorene molecules (<strong>V1</strong> and <strong>V2</strong>), and impedance spectroscopy measurements further revealed higher <em>R</em><small><sub>rec</sub></small> values for these HTMs, indicating improved charge transport and reduced recombination losses. These findings demonstrate the potential of the newly developed hydrophobic fluorene-based HTMs for achieving long-lasting performance in PVSCs.</p>\",\"PeriodicalId\":104,\"journal\":{\"name\":\"Sustainable Energy & Fuels\",\"volume\":\" 10\",\"pages\":\" 2769-2781\"},\"PeriodicalIF\":5.0000,\"publicationDate\":\"2025-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Energy & Fuels\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00120j\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Energy & Fuels","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/se/d5se00120j","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

空穴传输材料(HTMs)是钙钛矿太阳能电池(PVSCs)电荷分离的关键材料。除了具有合适的HOMO/LUMO能量外,HTMs还应该具有理想的疏水性,以保护钙钛矿免受大气水分的影响,从而提高器件的稳定性。我们设计了两种芴核D- π - D型有机HTMs (V1和V2),由4,4′-甲氧基三苯胺(V1)或n -苯基-3,6-甲氧基咔唑(V2)作为外周供体片段。光电表征和密度泛函理论计算证实了这些新HTMs分子内的电荷转移。UPS和REELS分析显示V1和V2的HOMO-LUMO能级与MAPbI3和金电极的功函数一致,有利于有效的电荷提取。TRPL和瞬态吸收研究很好地解释了V1比V2更好地淬灭钙钛矿的发光,这表明V1与钙钛矿层的界面接触更好。因此,在ITO/SnO2/MAPbI3/HTM(V1或V2)/Au架构中,以V1和V2作为HTMs的PVSCs的功率转换效率(PCE)分别为14.05%和12.73%。此外,安装V1的设备在480小时以上仍能保持75%的初始效率。接触角测量结果显示,这两种烷基化芴分子(V1和V2)都具有较强的疏水性,阻抗谱测量结果进一步显示,这些HTMs具有较高的Rrec值,表明电荷输运改善,复合损失减少。这些发现证明了新开发的疏水性芴基HTMs在PVSCs中实现持久性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Dopant-free hydrophobic fluorene-based hole transport materials: impact of methoxy-substituted triphenylamine and carbazole peripheral groups on the performance of perovskite solar cells†

Hole-transporting materials (HTMs) are crucial for charge separation in perovskite solar cells (PVSCs). Besides possessing suitable HOMO/LUMO energies, HTMs should ideally be hydrophobic to protect the perovskites from atmospheric moisture to enhance device stability. We designed two fluorene-core D–π–D-type organic HTMs (V1 and V2), consisting of either 4,4′-methoxy triphenylamine (V1) or N-phenyl-3,6-methoxy carbazole (V2) as the peripheral donor moiety. Optoelectronic characterization and density functional theory calculations confirmed the intramolecular charge transfer within these new HTMs. UPS and REELS analyses revealed favorable HOMO–LUMO energy level alignment of V1 and V2 with the work functions of MAPbI3 and gold electrode for effective charge extraction. TRPL and transient absorption studies commendably explained better quenching of perovskite's luminescence by V1 over V2, suggesting a better interfacial contact of V1 with the perovskite layer. Accordingly, the PVSCs with V1 and V2 as HTMs in an architecture ITO/SnO2/MAPbI3/HTM(V1 or V2)/Au demonstrated power conversion efficiency (PCE) of 14.05% and 12.73% respectively. Also, the device with V1 retains 75% of its initial efficiency for more than 480 hours. The contact angle measurements revealed the strong hydrophobicity of both alkylated fluorene molecules (V1 and V2), and impedance spectroscopy measurements further revealed higher Rrec values for these HTMs, indicating improved charge transport and reduced recombination losses. These findings demonstrate the potential of the newly developed hydrophobic fluorene-based HTMs for achieving long-lasting performance in PVSCs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sustainable Energy & Fuels
Sustainable Energy & Fuels Energy-Energy Engineering and Power Technology
CiteScore
10.00
自引率
3.60%
发文量
394
期刊介绍: Sustainable Energy & Fuels will publish research that contributes to the development of sustainable energy technologies with a particular emphasis on new and next-generation technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信