基于sno2的MEMS传感器阵列优化,用于快速准确地分类肉类类型和新鲜度状态

IF 4.1 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingwei Zhao , Wenfeng Shen , Yang Gao , Dawu Lv , Weijie Song , Ruiqin Tan
{"title":"基于sno2的MEMS传感器阵列优化,用于快速准确地分类肉类类型和新鲜度状态","authors":"Jingwei Zhao ,&nbsp;Wenfeng Shen ,&nbsp;Yang Gao ,&nbsp;Dawu Lv ,&nbsp;Weijie Song ,&nbsp;Ruiqin Tan","doi":"10.1016/j.sna.2025.116680","DOIUrl":null,"url":null,"abstract":"<div><div>This research presents an innovative sensor array founded on four SnO<sub>2</sub>-based MEMS gas sensors meticulously engineered for instant meat type and freshness detection. Fabricated by inkjet printing, the sensors –- SnO<sub>2</sub>, Cu-SnO<sub>2</sub>, Ni-SnO<sub>2</sub>, and Pd-Au-SnO<sub>2</sub> - display extraordinary sensitivity to ppm-level trimethylamine (TMA) and ppb-level H<sub>2</sub>S. Notably, the Pd-Au-SnO<sub>2</sub> sensor responds with 88.25 at 10 ppm TMA, and the Cu-SnO<sub>2</sub> sensor with 2.27 at 5 ppb H<sub>2</sub>S. When integrated with machine learning, the system achieves 95.5 % accuracy in species identification and flawless 100 % for chicken, pork, and pomfret freshness. The SVM model attains 94.0 % accuracy across nine fresh meat classifications. DFT analyses elucidate that heterojunctions and noble metal modifications optimize the energy band, augmenting sensor performance. This study accentuates the potential of inkjet-printed SnO<sub>2</sub>-based arrays combined with machine learning, heralding advanced food safety and quality detection frameworks.</div></div>","PeriodicalId":21689,"journal":{"name":"Sensors and Actuators A-physical","volume":"391 ","pages":"Article 116680"},"PeriodicalIF":4.1000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of SnO2-based MEMS sensor array for expeditious and precise categorization of meat types and freshness status\",\"authors\":\"Jingwei Zhao ,&nbsp;Wenfeng Shen ,&nbsp;Yang Gao ,&nbsp;Dawu Lv ,&nbsp;Weijie Song ,&nbsp;Ruiqin Tan\",\"doi\":\"10.1016/j.sna.2025.116680\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This research presents an innovative sensor array founded on four SnO<sub>2</sub>-based MEMS gas sensors meticulously engineered for instant meat type and freshness detection. Fabricated by inkjet printing, the sensors –- SnO<sub>2</sub>, Cu-SnO<sub>2</sub>, Ni-SnO<sub>2</sub>, and Pd-Au-SnO<sub>2</sub> - display extraordinary sensitivity to ppm-level trimethylamine (TMA) and ppb-level H<sub>2</sub>S. Notably, the Pd-Au-SnO<sub>2</sub> sensor responds with 88.25 at 10 ppm TMA, and the Cu-SnO<sub>2</sub> sensor with 2.27 at 5 ppb H<sub>2</sub>S. When integrated with machine learning, the system achieves 95.5 % accuracy in species identification and flawless 100 % for chicken, pork, and pomfret freshness. The SVM model attains 94.0 % accuracy across nine fresh meat classifications. DFT analyses elucidate that heterojunctions and noble metal modifications optimize the energy band, augmenting sensor performance. This study accentuates the potential of inkjet-printed SnO<sub>2</sub>-based arrays combined with machine learning, heralding advanced food safety and quality detection frameworks.</div></div>\",\"PeriodicalId\":21689,\"journal\":{\"name\":\"Sensors and Actuators A-physical\",\"volume\":\"391 \",\"pages\":\"Article 116680\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sensors and Actuators A-physical\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0924424725004868\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators A-physical","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924424725004868","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本研究提出了一种创新的传感器阵列,该阵列基于四个基于sno2的MEMS气体传感器,精心设计用于即时肉类类型和新鲜度检测。这些传感器——SnO2、Cu-SnO2、Ni-SnO2和Pd-Au-SnO2——通过喷墨打印制成,对ppm级三甲胺(TMA)和ppb级H2S表现出非凡的灵敏度。值得注意的是,Pd-Au-SnO2传感器在10 ppm TMA下的响应为88.25,Cu-SnO2传感器在5 ppb H2S下的响应为2.27。当与机器学习相结合时,该系统在物种识别方面的准确率达到95.5 %,在鸡肉、猪肉和鲳鱼的新鲜度方面达到100% %。支持向量机模型在9种鲜肉分类中达到94.0 %的准确率。DFT分析表明,异质结和贵金属修饰优化了能带,提高了传感器的性能。这项研究强调了喷墨印刷sno2阵列与机器学习相结合的潜力,预示着先进的食品安全和质量检测框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimization of SnO2-based MEMS sensor array for expeditious and precise categorization of meat types and freshness status
This research presents an innovative sensor array founded on four SnO2-based MEMS gas sensors meticulously engineered for instant meat type and freshness detection. Fabricated by inkjet printing, the sensors –- SnO2, Cu-SnO2, Ni-SnO2, and Pd-Au-SnO2 - display extraordinary sensitivity to ppm-level trimethylamine (TMA) and ppb-level H2S. Notably, the Pd-Au-SnO2 sensor responds with 88.25 at 10 ppm TMA, and the Cu-SnO2 sensor with 2.27 at 5 ppb H2S. When integrated with machine learning, the system achieves 95.5 % accuracy in species identification and flawless 100 % for chicken, pork, and pomfret freshness. The SVM model attains 94.0 % accuracy across nine fresh meat classifications. DFT analyses elucidate that heterojunctions and noble metal modifications optimize the energy band, augmenting sensor performance. This study accentuates the potential of inkjet-printed SnO2-based arrays combined with machine learning, heralding advanced food safety and quality detection frameworks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Sensors and Actuators A-physical
Sensors and Actuators A-physical 工程技术-工程:电子与电气
CiteScore
8.10
自引率
6.50%
发文量
630
审稿时长
49 days
期刊介绍: Sensors and Actuators A: Physical brings together multidisciplinary interests in one journal entirely devoted to disseminating information on all aspects of research and development of solid-state devices for transducing physical signals. Sensors and Actuators A: Physical regularly publishes original papers, letters to the Editors and from time to time invited review articles within the following device areas: • Fundamentals and Physics, such as: classification of effects, physical effects, measurement theory, modelling of sensors, measurement standards, measurement errors, units and constants, time and frequency measurement. Modeling papers should bring new modeling techniques to the field and be supported by experimental results. • Materials and their Processing, such as: piezoelectric materials, polymers, metal oxides, III-V and II-VI semiconductors, thick and thin films, optical glass fibres, amorphous, polycrystalline and monocrystalline silicon. • Optoelectronic sensors, such as: photovoltaic diodes, photoconductors, photodiodes, phototransistors, positron-sensitive photodetectors, optoisolators, photodiode arrays, charge-coupled devices, light-emitting diodes, injection lasers and liquid-crystal displays. • Mechanical sensors, such as: metallic, thin-film and semiconductor strain gauges, diffused silicon pressure sensors, silicon accelerometers, solid-state displacement transducers, piezo junction devices, piezoelectric field-effect transducers (PiFETs), tunnel-diode strain sensors, surface acoustic wave devices, silicon micromechanical switches, solid-state flow meters and electronic flow controllers. Etc...
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信