Gukov-Witten表面缺陷空间中的可积角

IF 4.3 2区 物理与天体物理 Q1 ASTRONOMY & ASTROPHYSICS
Adam Chalabi, Charlotte Kristjansen, Chenliang Su
{"title":"Gukov-Witten表面缺陷空间中的可积角","authors":"Adam Chalabi,&nbsp;Charlotte Kristjansen,&nbsp;Chenliang Su","doi":"10.1016/j.physletb.2025.139512","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate integrability properties of Gukov-Witten 1/2-BPS surface defects in <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span> super-Yang-Mills (SYM) theory in the large-<em>N</em> limit. We demonstrate that ordinary Gukov-Witten defects, which depend on a set of continuous parameters, are not integrable except for special sub-sectors. In contrast to these, we show that rigid Gukov-Witten defects, which depend on a discrete parameter but not on continuous ones, appear integrable in a corner of the discrete parameter space. Whenever we find an integrable sector, we derive a closed-form factorised expression for the leading-order one-point function of unprotected operators built out of the adjoint scalars of <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span> SYM theory. Our results raise the possibility of finding an all-loop formula for one-point functions of unprotected operators in the presence of a rigid Gukov-Witten defect at the corner in parameter space.</div></div>","PeriodicalId":20162,"journal":{"name":"Physics Letters B","volume":"866 ","pages":"Article 139512"},"PeriodicalIF":4.3000,"publicationDate":"2025-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrable corners in the space of Gukov-Witten surface defects\",\"authors\":\"Adam Chalabi,&nbsp;Charlotte Kristjansen,&nbsp;Chenliang Su\",\"doi\":\"10.1016/j.physletb.2025.139512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate integrability properties of Gukov-Witten 1/2-BPS surface defects in <span><math><mi>S</mi><mi>U</mi><mo>(</mo><mi>N</mi><mo>)</mo></math></span> <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span> super-Yang-Mills (SYM) theory in the large-<em>N</em> limit. We demonstrate that ordinary Gukov-Witten defects, which depend on a set of continuous parameters, are not integrable except for special sub-sectors. In contrast to these, we show that rigid Gukov-Witten defects, which depend on a discrete parameter but not on continuous ones, appear integrable in a corner of the discrete parameter space. Whenever we find an integrable sector, we derive a closed-form factorised expression for the leading-order one-point function of unprotected operators built out of the adjoint scalars of <span><math><mi>N</mi><mo>=</mo><mn>4</mn></math></span> SYM theory. Our results raise the possibility of finding an all-loop formula for one-point functions of unprotected operators in the presence of a rigid Gukov-Witten defect at the corner in parameter space.</div></div>\",\"PeriodicalId\":20162,\"journal\":{\"name\":\"Physics Letters B\",\"volume\":\"866 \",\"pages\":\"Article 139512\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0370269325002734\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0370269325002734","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了SU(N) N=4 super-Yang-Mills (SYM)理论中Gukov-Witten 1/2-BPS表面缺陷在大N极限下的可积性。我们证明了依赖于一组连续参数的普通Gukov-Witten缺陷除了特殊的子扇区外是不可积的。与此相反,我们证明了依赖于离散参数而不依赖于连续参数的刚性Gukov-Witten缺陷在离散参数空间的一个角落表现为可积。当我们找到一个可积扇区时,我们得到了由N=4 SYM理论的伴随标量构造的无保护算子的首阶一点函数的封闭形式分解表达式。我们的结果提出了在参数空间角处存在刚性Gukov-Witten缺陷的无保护算子的一点函数的全环公式的可能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Integrable corners in the space of Gukov-Witten surface defects
We investigate integrability properties of Gukov-Witten 1/2-BPS surface defects in SU(N) N=4 super-Yang-Mills (SYM) theory in the large-N limit. We demonstrate that ordinary Gukov-Witten defects, which depend on a set of continuous parameters, are not integrable except for special sub-sectors. In contrast to these, we show that rigid Gukov-Witten defects, which depend on a discrete parameter but not on continuous ones, appear integrable in a corner of the discrete parameter space. Whenever we find an integrable sector, we derive a closed-form factorised expression for the leading-order one-point function of unprotected operators built out of the adjoint scalars of N=4 SYM theory. Our results raise the possibility of finding an all-loop formula for one-point functions of unprotected operators in the presence of a rigid Gukov-Witten defect at the corner in parameter space.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Physics Letters B
Physics Letters B 物理-物理:综合
CiteScore
9.10
自引率
6.80%
发文量
647
审稿时长
3 months
期刊介绍: Physics Letters B ensures the rapid publication of important new results in particle physics, nuclear physics and cosmology. Specialized editors are responsible for contributions in experimental nuclear physics, theoretical nuclear physics, experimental high-energy physics, theoretical high-energy physics, and astrophysics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信