kap - newell系统耦合三阶流动方程的∂ā n -dressing方法

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Jin-Jin Mao
{"title":"kap - newell系统耦合三阶流动方程的∂ā n -dressing方法","authors":"Jin-Jin Mao","doi":"10.1016/j.cnsns.2025.108841","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we investigate the nonlinear spectral properties of the coupled third-order flow of the Kaup–Newell (TOFKN) system by formulating a local matrix <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-equation with non-normalized boundary conditions and two linear constraint equations. Furthermore, we derive a coupled Kaup–Newell hierarchy with sources using recursive operator. By employing a specially designed spectral transformation matrix and the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method, we construct the <span><math><mi>N</mi></math></span>-soliton solutions of the coupled TOFKN system, providing explicit expressions for the one- and two-soliton solutions. These findings demonstrate the effectiveness of the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method in capturing the complex nonlinear dynamics of the TOFKN system, offering new insights into its soliton interactions and stability properties.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"149 ","pages":"Article 108841"},"PeriodicalIF":3.4000,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"∂̄-dressing method for the coupled third-order flow equation of the Kaup–Newell system\",\"authors\":\"Jin-Jin Mao\",\"doi\":\"10.1016/j.cnsns.2025.108841\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we investigate the nonlinear spectral properties of the coupled third-order flow of the Kaup–Newell (TOFKN) system by formulating a local matrix <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-equation with non-normalized boundary conditions and two linear constraint equations. Furthermore, we derive a coupled Kaup–Newell hierarchy with sources using recursive operator. By employing a specially designed spectral transformation matrix and the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method, we construct the <span><math><mi>N</mi></math></span>-soliton solutions of the coupled TOFKN system, providing explicit expressions for the one- and two-soliton solutions. These findings demonstrate the effectiveness of the <span><math><mover><mrow><mi>∂</mi></mrow><mrow><mo>̄</mo></mrow></mover></math></span>-dressing method in capturing the complex nonlinear dynamics of the TOFKN system, offering new insights into its soliton interactions and stability properties.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"149 \",\"pages\":\"Article 108841\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2025-05-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570425002527\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570425002527","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了kap - newell (TOFKN)系统耦合三阶流的非线性谱性质,通过建立一个具有非归一化边界条件的局部矩阵∂∂-方程和两个线性约束方程。进一步,我们利用递归算子推导出了一个带源的耦合kap - newell层次结构。采用特殊设计的谱变换矩阵和∂′-修整方法,构造了耦合TOFKN系统的n孤子解,给出了单孤子解和双孤子解的显式表达式。这些发现证明了∂²-dressing方法在捕捉TOFKN系统复杂非线性动力学方面的有效性,为其孤子相互作用和稳定性特性提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
∂̄-dressing method for the coupled third-order flow equation of the Kaup–Newell system
In this article, we investigate the nonlinear spectral properties of the coupled third-order flow of the Kaup–Newell (TOFKN) system by formulating a local matrix ̄-equation with non-normalized boundary conditions and two linear constraint equations. Furthermore, we derive a coupled Kaup–Newell hierarchy with sources using recursive operator. By employing a specially designed spectral transformation matrix and the ̄-dressing method, we construct the N-soliton solutions of the coupled TOFKN system, providing explicit expressions for the one- and two-soliton solutions. These findings demonstrate the effectiveness of the ̄-dressing method in capturing the complex nonlinear dynamics of the TOFKN system, offering new insights into its soliton interactions and stability properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信