三角形上二维Ripa系统的等压保稳态自适应曲面重建方案

IF 2.5 3区 工程技术 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Jian Dong, Xu Qian, Zige Wei
{"title":"三角形上二维Ripa系统的等压保稳态自适应曲面重建方案","authors":"Jian Dong,&nbsp;Xu Qian,&nbsp;Zige Wei","doi":"10.1016/j.compfluid.2025.106664","DOIUrl":null,"url":null,"abstract":"<div><div>This work aims to introduce adaptive surface reconstruction schemes to solve the Ripa system on moving triangular meshes. We use surface reconstructions to define approximate Riemann states to preserve stationary steady states, including the still-water steady state and the highly nontrivial isobaric steady state. To prevent spurious pressure oscillations near contact waves, we introduce a <em>provable positivity-preserving parameter</em>. Importantly, the scheme equipped with the parameter is provably positivity-preserving. To enhance numerical accuracy, we reconstruct piecewise linear polynomials that satisfy the <em>local maximum principle</em>, which ensures the positivity-preserving property and eliminates spurious oscillations near solutions with large gradients. In particular, the adaptive surface reconstruction scheme preserves stationary steady states, including the still-water steady state and the isobaric steady state. Finally, we validate these properties by presenting several computed results for the Ripa system.</div></div>","PeriodicalId":287,"journal":{"name":"Computers & Fluids","volume":"297 ","pages":"Article 106664"},"PeriodicalIF":2.5000,"publicationDate":"2025-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isobaric steady-state preserving adaptive surface reconstruction schemes for the two-dimensional Ripa system on triangles\",\"authors\":\"Jian Dong,&nbsp;Xu Qian,&nbsp;Zige Wei\",\"doi\":\"10.1016/j.compfluid.2025.106664\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work aims to introduce adaptive surface reconstruction schemes to solve the Ripa system on moving triangular meshes. We use surface reconstructions to define approximate Riemann states to preserve stationary steady states, including the still-water steady state and the highly nontrivial isobaric steady state. To prevent spurious pressure oscillations near contact waves, we introduce a <em>provable positivity-preserving parameter</em>. Importantly, the scheme equipped with the parameter is provably positivity-preserving. To enhance numerical accuracy, we reconstruct piecewise linear polynomials that satisfy the <em>local maximum principle</em>, which ensures the positivity-preserving property and eliminates spurious oscillations near solutions with large gradients. In particular, the adaptive surface reconstruction scheme preserves stationary steady states, including the still-water steady state and the isobaric steady state. Finally, we validate these properties by presenting several computed results for the Ripa system.</div></div>\",\"PeriodicalId\":287,\"journal\":{\"name\":\"Computers & Fluids\",\"volume\":\"297 \",\"pages\":\"Article 106664\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Fluids\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045793025001240\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Fluids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045793025001240","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本文旨在引入自适应曲面重建方案来解决移动三角形网格上的Ripa系统。我们使用表面重建来定义近似黎曼状态,以保持稳态,包括静水稳态和高度非平凡等压稳态。为了防止接触波附近的伪压力振荡,我们引入了一个可证明的保正参数。重要的是,该方案具有可证明的保正性。为了提高数值精度,我们重构了满足局部极大值原理的分段线性多项式,既保证了多项式的保正性,又消除了大梯度解附近的伪振荡。特别地,自适应表面重建方案保留了静止稳态,包括静水稳态和等压稳态。最后,我们通过给出Ripa系统的几个计算结果来验证这些属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isobaric steady-state preserving adaptive surface reconstruction schemes for the two-dimensional Ripa system on triangles
This work aims to introduce adaptive surface reconstruction schemes to solve the Ripa system on moving triangular meshes. We use surface reconstructions to define approximate Riemann states to preserve stationary steady states, including the still-water steady state and the highly nontrivial isobaric steady state. To prevent spurious pressure oscillations near contact waves, we introduce a provable positivity-preserving parameter. Importantly, the scheme equipped with the parameter is provably positivity-preserving. To enhance numerical accuracy, we reconstruct piecewise linear polynomials that satisfy the local maximum principle, which ensures the positivity-preserving property and eliminates spurious oscillations near solutions with large gradients. In particular, the adaptive surface reconstruction scheme preserves stationary steady states, including the still-water steady state and the isobaric steady state. Finally, we validate these properties by presenting several computed results for the Ripa system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Fluids
Computers & Fluids 物理-计算机:跨学科应用
CiteScore
5.30
自引率
7.10%
发文量
242
审稿时长
10.8 months
期刊介绍: Computers & Fluids is multidisciplinary. The term ''fluid'' is interpreted in the broadest sense. Hydro- and aerodynamics, high-speed and physical gas dynamics, turbulence and flow stability, multiphase flow, rheology, tribology and fluid-structure interaction are all of interest, provided that computer technique plays a significant role in the associated studies or design methodology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信